Advertisements
Advertisements
Question
The magnetic field at the centre of a circular current carrying loop of radius 12 cm is 6.4 × 10-6 T. What is the magnetic moment of the loop?
Solution
Data:
R = 12 cm = 12 × 10-2 m
B = 6.4 × 10-6 T
µ0 = 4π x 10-7 T·m/A
Formula:
The magnetic moment (M) of a current-carrying loop is given by the formula:
M = NIA
The magnetic field at the center of a circular current-carrying loop is given by the formula:
B = `(mu_0I)/(2R)`
Rearrange the formula to solve for `I = (2Br)/(mu_0)`
Solution:
⇒ `I = (2 xx (6.4 xx 10^-6) xx 0.12)/(4pi xx 10^-7)`
⇒ `I = (1.536 xx 10^-6)/(4pi xx 10^-7)`
⇒ `I = (1.536 xx 10^-6)/(4 xx 3.14 xx 10^-7)`
⇒ `I = (1.536 xx 10^-6)/(4 xx 3.14 xx 10^-7) ...(pi = 3.14)`
⇒ `I = (1.536 xx 10^-6)/(12.56 xx 10^-7)`
⇒ `I = (1.536 xx 10^-6)/(1.256 xx 10^-6)`
⇒ `I = (1.536)/(1.256)`
⇒ `I = 1.223 A`
∴ The area of the circular loop:
A = `pir^2` ...(Formula)
⇒ A = 3.14 × (0.12)2
⇒ A = 3.14 × 0.12 × 0.12
⇒ A = 3.14 × 0.0144
⇒ A = 0.0452 m2
∴ M = NIA ...(Formula)
⇒ M = 1 × 1.223 x 0.0452
⇒ M = 0.0552 A.m2
∴ The magnetic moment of the loop is 0.0552 A·m2.