Advertisements
Advertisements
Question
The marks obtained by a set of students in an examination all given below:
Marks | 5 | 10 | 15 | 20 | 25 | 30 |
Number of students | 6 | 4 | 6 | 12 | x | 4 |
Given that the mean marks of the set of students is 18, Calculate the numerical value of x.
Solution
Calculation of Mean :
Marks (x) | Number of students (f) | fx |
5 | 6 | 30 |
10 | 4 | 40 |
15 | 6 | 90 |
20 | 12 | 240 |
25 | x | 25x |
30 | 4 | 120 |
`sumf = 32 + x` | `sumfx = 520 + 25x` |
∴ Mean = `(sumfx)/(sumf)`
∴ 18 = `(520 + 25x)/(32 + x)`
⇒ 576 + 18x = 520 + 25x
⇒ 7x = 56
⇒ x = 8.
APPEARS IN
RELATED QUESTIONS
The following table gives the number of boys of a particular age in a class of 40 students. Calculate the mean age of the students
Age (in years) | 15 | 16 | 17 | 18 | 19 | 20 |
No. of students | 3 | 8 | 10 | 10 | 5 | 4 |
Find the mean of each of the following frequency distributions
Class interval | 0 - 8 | 8 - 16 | 16 - 24 | 24 - 32 | 32 - 40 |
Frequency | 5 | 6 | 4 | 3 | 2 |
Find the mean using direct method:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequency | 7 | 5 | 6 | 12 | 8 | 2 |
Find the mean of the following frequency distribution table using a suitable method:
Class | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 - 70 |
Frequency | 25 | 40 | 42 | 33 | 10 |
Weight of 60 eggs were recorded as given below:
Weight (in grams) | 75 – 79 | 80 – 84 | 85 – 89 | 90 – 94 | 95 – 99 | 100 - 104 | 105 - 109 |
No. of eggs | 4 | 9 | 13 | 17 | 12 | 3 | 2 |
Calculate their mean weight to the nearest gram.
The following table shows the income of farmers in a grape season. Find the mean of their income.
Income
(Thousand Rupees)
|
20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Farmers | 10 | 11 | 15 | 16 | 18 | 14 |
In X standard, there are three sections A, B and C with 25, 40 and 35 students respectively. The average marks of section A is 70%, section B is 65% and of section C is 50%. Find the average marks of the entire X standard.
Mean of 100 items is 49. It was discovered that three items which should have been 60, 70, 80 were wrongly read as 40, 20, 50 respectively. The correct mean is ______.
The median from the table is?
Value | Frequency |
7 | 2 |
8 | 1 |
9 | 4 |
10 | 5 |
11 | 6 |
12 | 1 |
13 | 3 |
Given that the mean of the following frequency distribution is 30, find the missing frequency ‘f’.
Class Interval | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 |
Frequency | 4 | 6 | 10 | f | 6 | 4 |