Advertisements
Advertisements
Question
The monthly income of A and B are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 5,000 per month, find the monthly income of each
Solution
Let the income of “A” be “x” and the income of “B” be “y”.
By the given first condition
x : y = 3 : 4
4x = 3y ...(Product of the extreme is equal to the product of the means)
4x – 3y = 0 → (1)
Expenditure of A = x – 5000
Expenditure of B = y – 5000
By the given second condition
x – 5000 : y – 5000 = 5 : 7
7(x – 5000) = 5(y – 5000)
7x – 35000 = 5y – 25000
7x – 5y = –25000 + 35000
7x – 5y = 10000 → (2)
(1) × 5 ⇒ 20x – 15y = 0 → (3)
(2) × 3 ⇒ 21x – 15y = 30000 → (4)
(3) – (4) ⇒ x + 0 = 30000
x = 30000
Substitute the value of x in (1)
4(30000) – 3y = 0
120000 = 3y
y = `120000/3` = 40000
∴ Monthly income of A is Rs 30,000
Monthly income of B is Rs 40,000
APPEARS IN
RELATED QUESTIONS
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 3y = 8
2x = 2 + 3y
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
6x = 7y + 7
7y - x = 8
Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
1.5x + 0.1y = 6.2
3x - 0.4y = 11.2
Solve the following pair of linear (Simultaneous ) equation using method of elimination by substitution :
2( x - 3 ) + 3( y - 5 ) = 0
5( x - 1 ) + 4( y - 4 ) = 0
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x + 2y =11
2x - 3y + 10 = 0
Solve the following simultaneous equations by the substitution method:
2x + y = 8
3y = 3 + 4x
Solve the following simultaneous equations by the substitution method:
5x + 4y - 23 = 0
x + 9 = 6y
Solve the following simultaneous equations by the substitution method:
0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5
Solve the following simultaneous equations by the substitution method:
3 - (x + 5) = y + 2
2(x + y) = 10 + 2y
In a ABC, ∠A = x°, ∠B = (2x - 30)°, ∠C = y° and also, ∠A + ∠B = one right angle. Find the angles. Also, state the type of this triangle.