English

The p.m.f. of a d.r.v. X is P(X = x) = {(5x)25,for x=0,1,2,3,4,5),(0,otherwise) If a = P(X ≤ 2) and b = P(X ≥ 3), then - Mathematics and Statistics

Advertisements
Advertisements

Question

The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for"  x = 0","  1","  2","  3","  4","  5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then

Options

  • a < b

  • a > b

  • a = b

  • a + b = 2

MCQ

Solution

a = b

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 2.7: Probability Distributions - MCQ

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer

Z 3 2 1 0 −1
P(Z) 0.3 0.2 0.4 0 0.05

Find the mean number of heads in three tosses of a fair coin.


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.


Find k, if the following function represents p.d.f. of r.v. X.

f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.

Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that waiting time is between 1 and 3.


If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

*1

P (–1 ≤ X ≤ 2)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find the probability distribution of number of heads in four tosses of a coin


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).


Given that X ~ B(n,p), if n = 10, E(X) = 8, find Var(X).


X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______


Choose the correct alternative :

If X ∼ B`(20, 1/10)` then E(X) = _______


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


If F(x) is distribution function of discrete r.v.X with p.m.f. P(x) = `k^4C_x` for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(–1) = _______


Solve the following problem :

The p.m.f. of a r.v.X is given by

`P(X = x) = {(((5),(x)) 1/2^5", ", x = 0", "1", "2", "3", "4", "5.),(0,"otherwise"):}`

Show that P(X ≤ 2) = P(X ≤ 3).


Solve the following problem :

The following is the c.d.f of a r.v.X.

x – 3 – 2 – 1 0 1 2 3 4
F (x) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find the probability distribution of X and P(–1 ≤ X ≤ 2).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x 1 2 3
P(X = x) `(1)/(5)` `(2)/(5)` `(2)/(5)`

If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for"  x = 1","  2","  3","),(0",", "otherwise"):}` then E(X) = ______


If a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X = x) k 2k 2k 3k k2 2k2 7k2 + k

then k = ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

Choose the correct alternative:

f(x) is c.d.f. of discete r.v. X whose distribution is

xi – 2 – 1 0 1 2
pi 0.2 0.3 0.15 0.25 0.1

then F(– 3) = ______


The values of discrete r.v. are generally obtained by ______


If X is discrete random variable takes the values x1, x2, x3, … xn, then `sum_("i" = 1)^"n" "P"(x_"i")` = ______


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

k = `square`


The following function represents the p.d.f of a.r.v. X

f(x) = `{{:((kx;, "for"  0 < x < 2, "then the value of K is ")),((0;,  "otherwise")):}` ______ 


The value of discrete r.v. is generally obtained by counting.


Given below is the probability distribution of a discrete random variable x.

X 1 2 3 4 5 6
P(X = x) K 0 2K 5K K 3K

Find K and hence find P(2 ≤ x ≤ 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×