Advertisements
Advertisements
Question
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
k = `square`
Solution
Since `sum"p"_"i"` = 1
k + 2k + 3k + 5k + 6k = 1
∴ 21k = 1
k = `1/21`
APPEARS IN
RELATED QUESTIONS
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)
Find the probability distribution of number of number of tails in three tosses of a coin
Choose the correct alternative :
If X ∼ B`(20, 1/10)` then E(X) = _______
State whether the following is True or False :
If p.m.f. of discrete r.v. X is
x | 0 | 1 | 2 |
P(X = x) | q2 | 2pq | p2 |
then E(x) = 2p.
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | – 1 | 0 | 1 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Let the p. m. f. of the r. v. X be
`"P"(x) = {((3 - x)/(10)", ","for" x = -1", "0", "1", "2.),(0,"otherwise".):}`
Calculate E(X) and Var(X).
Solve the following problem :
Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).
If a d.r.v. X has the following probability distribution:
X | –2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P(X = –1) is ______
The values of discrete r.v. are generally obtained by ______
E(x) is considered to be ______ of the probability distribution of x.
Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`
E(X) = `square + square + square = square`
Var(X) = `"E"("X"^2) - {"E"("X")}^2`
= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`
= `square - square`
= `square`
The probability distribution of a discrete r.v. X is as follows:
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
- Determine the value of k.
- Find P(X ≤ 4)
- P(2 < X < 4)
- P(X ≥ 3)
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
The p.m.f. of a random variable X is as follows:
P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.