English

Solve the following : The following probability distribution of r.v. X X=x -3 -2 -1 0 1 2 3 P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is positive

Sum

Solution

P (X is positive) = P(X = 1) + P (X = 2) + P(X = 3)

 = 0.25 + 0.15 +0.1+ = 0.50

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Miscellaneous Exercise 2 [Page 242]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 7 Probability Distributions
Miscellaneous Exercise 2 | Q 3.1 | Page 242

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer

Z 3 2 1 0 −1
P(Z) 0.3 0.2 0.4 0 0.05

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

0 -1 -2
P(X) 0.3 0.4 0.3

It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Find k if the following function represent p.d.f. of r.v. X

f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that waiting time is between 1 and 3.


If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).


If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______. 


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =


Choose the correct option from the given alternative:

Find expected value of and variance of X for the following p.m.f.

X -2 -1 0 1 2
P(x) 0.3 0.3 0.1 0.05 0.25

Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

*1

P (–1 ≤ X ≤ 2)


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(0.5 ≤ x ≤ 1.5)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find k if the following function represents the p. d. f. of a r. v. X.

f(x) = `{(kx,  "for"  0 < x < 2),(0,  "otherwise."):}`

Also find `"P"[1/4 < "X" < 1/2]`


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


Choose the correct alternative :

If X ∼ B`(20, 1/10)` then E(X) = _______


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


State whether the following is True or False :

If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.


State whether the following is True or False :

If p.m.f. of discrete r.v. X is

x 0 1 2
P(X = x) q2 2pq p2 

then E(x) = 2p.


Solve the following problem :

The following is the c.d.f of a r.v.X.

x – 3 – 2 – 1 0 1 2 3 4
F (x) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find the probability distribution of X and P(–1 ≤ X ≤ 2).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

X 0 1 2 3 4 5
P(X = x) `(1)/(32)` `(5)/(32)` `(10)/(32)` `(10)/(32)` `(5)/(32)` `(1)/(32)`

Solve the following problem :

Let the p. m. f. of the r. v. X be

`"P"(x) = {((3 - x)/(10)", ","for"  x = -1", "0", "1", "2.),(0,"otherwise".):}`
Calculate E(X) and Var(X).


Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.


If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______


The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for"  x = 0","  1","  2","  3","  4","  5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for"  x = 1","  2","  3","),(0",", "otherwise"):}` then E(X) = ______


If a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X = x) k 2k 2k 3k k2 2k2 7k2 + k

then k = ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

k = `square`


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

P(X ≥ 3) = `square - square - square  = square`


The value of discrete r.v. is generally obtained by counting.


The p.m.f. of a random variable X is as follows:

P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.


Given below is the probability distribution of a discrete random variable x.

X 1 2 3 4 5 6
P(X = x) K 0 2K 5K K 3K

Find K and hence find P(2 ≤ x ≤ 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×