Advertisements
Advertisements
Question
The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
Solution
Radius (r1) of spherical balloon = 7 cm
Radius (r2) of the spherical balloon, when air is pumped into it = 14 cm
Required ratio = `"Initial surface area"/"Surface area after pumping air into a balloon"`
= `(4pir_1^2)/(4pir_2^2)` = `(r_1/r_2)^2`
= `(7/14)^2` = `1/4`
Therefore, the ratio between the surface areas in these two cases is 1 : 4.
APPEARS IN
RELATED QUESTIONS
A certain number of metallic cones, each of radius 2 cm and height 3 cm are melted and recast into a solid sphere of radius 6 cm. Find the number of cones.
Find the surface area of a sphere of radius 5.6 cm .
Metallic spheres of radii 6 cm, 8 cm and 10 cm respectively are melted and recasted into a single solid sphere. Taking π = 3.1, find the surface area of the solid sphere formed.
A largest sphere is to be carved out of a right circular cylinder of radius 7 cm and height 14 cm. Find the volume of the sphere.
Find the surface area of a sphere, if its volume is 38808 cubic cm. `(π = 22/7)`
A hemispherical bowl of internal radius 9 cm is full of liquid. This liquid is to be filled into conical shaped small containers each of diameter 3 cm and height 4 cm. How many containers are necessary to empty the bowl?
From a rectangular solid of metal 42 cm by 30 cm by 20 cm, a conical cavity of diameter 14 cm and depth 24 cm is drilled out. Find: the volume of remaining solid
Find the volume and surface area of a sphere of diameter 21 cm.
A vessel is in he form of an inverted cone. Its height is 11 cm., and the radius of its top which is open is 2.5 cm. It is filled with water up to the rim. When lead shots, each of which is a sphere of radius 0.25 cm., are dropped 2 into the vessel, `2/5`th of the water flows out. Find the number of lead shots dropped into the vessel.
The radius of a sphere is 10 cm. If we increase the radius 5% then how many % will increase in volume?