English

The Sum of Ages of a Man and His Son is 45 Years. Five Years Ago, the Product of Their Ages Was Four Times the Man'S Age at the Time. Find Their Present Ages. - Mathematics

Advertisements
Advertisements

Question

The sum of ages of a man and his son is 45 years. Five years ago, the product of their ages was four times the man's age at the time. Find their present ages.

Solution

Let the present age of the man be x years

Then present age of his son is  (45 - x) years

Five years ago, man’s age = (x - 5) years

And his son’s age (45 - x - 5) = (40 - x) years

Then according to question,

(x - 5)(40 - x) = 4(x - 5)

40x - x2 + 5x - 200 = 4x - 20

-x2 + 45x - 200 = 4x - 20

-x2 + 45x - 200 - 4x + 20 = 0

-x2 + 41x - 180 = 0

x2 - 41x + 180 = 0

x2 - 36x - 5x + 180 = 0

x(x - 36) -5(x - 36) = 0

(x - 36)(x - 5) = 0

So, either 

x - 36 = 0

x = 36

Or

x - 5 = 0

x = 5

But, the father’s age never be 5 years

Therefore, when x = 36 then

45 - x = 45 - 36 = 9

Hence, man’s present age is36 years and his son’s age is 9 years.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Quadratic Equations - Exercise 4.9 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 4 Quadratic Equations
Exercise 4.9 | Q 2 | Page 61
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×