English

The sum of the first n terms of an A.P. is 3n2 + 6n. Find the nth term of this A.P. - Mathematics

Advertisements
Advertisements

Question

The sum of the first n terms of an A.P. is 3n2 + 6n. Find the nth term of this A.P.

 
Sum

Solution

Let a be the first term and d be the common difference.
We know that, sum of first n terms = Sn =  \[\frac{n}{2}\] [ 2a + (n − 1)d]

It is given that sum of the first n terms of an A.P. is 3n2 + 6n.
∴ First term = =  S= 3(1)2 + 6(1) = 9.

Sum of first two terms = S= 3(2)2 + 6(2) = 24.

∴ Second term = S2 − S1 = 24 − 9 = 15.

∴ Common difference = d = Second term − First term
                                          = 15 − 9 = 6

Also, nth term = an = a + (n − 1)d
⇒ an = 9 + (n − 1)6
⇒ an = 9 + 6n − 6
⇒ an = 3 + 6n

Thus, nth term of this A.P. is 3 + 6n.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Arithmetic Progression - Exercise 5.6 [Page 53]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 5 Arithmetic Progression
Exercise 5.6 | Q 38 | Page 53
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×