English

The Sum of a Two Digit Number and the Number Obtained by Reversing the Order of Its Digits is 99. If the Digits Differ by 3, Find the Number. - Mathematics

Advertisements
Advertisements

Question

The sum of a two digit number and the number obtained by reversing the order of its digits is 99. If the digits differ by 3, find the number.

Definition

Solution

Let the digits at units and tens place of the given number be x and y respectively. Thus, the number is `10 y + x`.

The two digits of the number are differing by 3. Thus, we have ` x - y = +-3`

After interchanging the digits, the number becomes ` 10 x + y`.

The sum of the numbers obtained by interchanging the digits and the original number is 99. Thus, we have

` ( 10 x + y)+ (10 y + x)=99`

` ⇒ 10 x + y + 10 y + x = 99`

`⇒ 11 x + 11y = 99 `

` ⇒ 11( x + y )= 99`

` ⇒ x + y 99/11`

` ⇒ x + y =9`

So, we have two systems of simultaneous equations

` x- y = 3`

` x + y = 9`

` x - y = -3`

` x + y = 9`

Here x and y are unknowns. We have to solve the above systems of equations for xand y.

(i) First, we solve the system

` x - y = 3`

` x + y = 9`

Adding the two equations, we have

` ( x - y) + ( x + y) = 3+ 9`

` ⇒ x - y + x + y = 12`

` ⇒ 2x = 12`

` ⇒ x = 12/2`

` ⇒ x = 6`

Substituting the value of in the first equation, we have 

` 5 - y = 3`

` ⇒ y = 6-3`

` ⇒ y = 3`

Hence, the number is`10 xx 3 + 6 = 36`.

(ii) Now, we solve the system

` x - y = -3`

`x+y=9`

Adding the two equations, we have

`(x -y)+(x+y)= -3 +9`

` ⇒ x - y + x+ y = 6`

`⇒ 2x = 6`

` ⇒ x = 6/2`

` ⇒ x = 3`

Substituting the value of in the first equation, we have

` 3-y = -3`

`⇒ y = 3 + 3 `

` ⇒ y = 6`

Hence, the number is `10 xx6 + 3 = 63`.

Note that there are two such numbers.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Pair of Linear Equations in Two Variables - Exercise 3.7 [Page 86]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.7 | Q 7 | Page 86
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×