Advertisements
Advertisements
Question
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. What is the percentage increase in the area of the cross-section of the tree?
Solution
Area A = `pi"r"^2 = (pi"D"^2)/4`
dA = `(2pi"DdD")/4`
= `(pi"DdD")/2`
Percentage of increasing Area of the trees cross-section = `"dA"/"A" xx 100`
= `((pi"DdD")/2)/((pi"D"^2)/4) xx 100`
= `(2"dD")/"D" xx 100`
= `(2 xx 6/pi)/30 xx 100`
= `12/(30pi) xx 100`
= `40/pi`%
APPEARS IN
RELATED QUESTIONS
Let f(x) = `root(3)(x)`. Find the linear approximation at x = 27. Use the linear approximation to approximate `root(3)(27.2)`
Use the linear approximation to find approximate values of `root(4)(15)`
Use the linear approximation to find approximate values of `root(3)(26)`
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
Find a linear approximation for the following functions at the indicated points.
g(x) = `sqrt(x^2 + 9)`, x0 = – 4
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Percentage error
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the volume
Show that the percentage error in the nth root of a number is approximately `1/"n"` times the percentage error in the number
Find the differential dy for the following functions:
y = `(3 + sin(2x))^(2/3)`
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x3 – 2x2, x = 2, Δx = dx = 0.5
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x2 + 2x + 3, x = – 0.5, Δx = dx = 0.1
An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and the radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 4 to 4.1 hours?
A circular plate expands uniformly under the influence of heat. If its radius increases from 10.5 cm to 10.75 cm, then find an approximate change in the area and the approximate percentage change in the area
Choose the correct alternative:
A circular template has a radius of 10 cm. The measurement of the radius has an approximate error of 0.02 cm. Then the percentage error in the calculating the area of this template is
Choose the correct alternative:
If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is
Choose the correct alternative:
The approximate change in volume V of a cube of side x meters caused by increasing the side by 1% is
Choose the correct alternative:
Linear approximation for g(x) = cos x at x = `pi/2` is