Advertisements
Advertisements
Question
The volume of a cube is increasing at the rate of 6 cm3/s. How fast is the surface area of cube increasing, when the length of an edge is 8 cm?
Sum
Solution
Given
`(dv)/dt` = 6 cm3/s
l = 8 cm
find, `(ds)/dt`
V = volume of cube = l3
⇒ `(dv)/dt = 3l^2 (dl)/dt`
⇒ `6 = 3l^2 (dl)/dt`
⇒ `2/l^2 = (dl)/dt` ...(i)
Surface Area of cube
S = 6l2
⇒ `(ds)/dt = 12l (dl)/dt` ...(ii)
Now put eqn (i) in enq (ii)
⇒ `(ds)/dt = 12lxx2/l^2`
⇒ `(ds)/dt = 24/8`
⇒ `(ds)/dt` = 3 cm2/s
shaalaa.com
Is there an error in this question or solution?