Advertisements
Advertisements
Question
The wave pattern on a stretched string is shown in figure. Interpret what kind of wave this is and find its wavelength.
Solution
All particles are at rest at t = `T/4` and t = `(3T)/4`, which is in the stationary wave when the particle crosses its mean position.
Thus, the graph shows a stationary wave. The wave at x = 10, 20, 30, 40 cm there are nodes and the distance between successive nodes is `λ/2`.
∴ `λ/2 = (30 - 20)`
⇒ λ = 20 cm
APPEARS IN
RELATED QUESTIONS
An open organ pipe of length L vibrates in its fundamental mode. The pressure variation is maximum
A 2 m long string fixed at both ends is set into vibrations in its first overtone. The wave speed on the string is 200 m s−1 and the amplitude is 0⋅5 cm. (a) Find the wavelength and the frequency. (b) Write the equation giving the displacement of different points as a function of time. Choose the X-axis along the string with the origin at one end and t = 0 at the instant when the point x = 50 cm has reached its maximum displacement.
The number of possible natural oscillations of the air column in a pipe closed at one end of length 85 cm whose frequencies lie below 1250 Hz? (v = 340 m/s)
Water waves produced by a motor boat sailing in water are ______.
Which of the following statements are true for a stationary wave?
- Every particle has a fixed amplitude which is different from the amplitude of its nearest particle.
- All the particles cross their mean position at the same time.
- All the particles are oscillating with same amplitude.
- There is no net transfer of energy across any plane.
- There are some particles which are always at rest.
A sonometer wire is vibrating in resonance with a tuning fork. Keeping the tension applied same, the length of the wire is doubled. Under what conditions would the tuning fork still be is resonance with the wire?
Two travelling waves produce a standing wave represented by the equation. y = 1.0 mm cos (1.57 cm-1) x sin (78.5 s-1)t. The node closest to the origin in the region x > 0 will be at x = ______ cm.
A wire of length 2L is made by joining two wires A and B of the same length but different radii r and 2r, and made of the same material. It is vibrating at a frequency such that the joint of the two wires forms a node. If the number of antinodes in wire A is p and that in B is q then the ratio p : q is ______.
A tuning fork of frequency 480 Hz is used in an experiment for measuring the speed of sound (ν) in the air by resonance tube method. Resonance is observed to occur at two successive lengths of the air column, l1 = 30 cm and l2 = 70 cm. Then, ν is equal to ______.
A string 2.0 m long and fixed at its ends is driven by a 240 Hz vibrator. The string vibrates in its third harmonic mode. The speed of the wave and its fundamental frequency is ______.