Advertisements
Advertisements
Question
Which of the following statements are true for a stationary wave?
- Every particle has a fixed amplitude which is different from the amplitude of its nearest particle.
- All the particles cross their mean position at the same time.
- All the particles are oscillating with same amplitude.
- There is no net transfer of energy across any plane.
- There are some particles which are always at rest.
Solution
a, b, d and e
Explanation:
We know that the standard equation of stationary wave is
`y(x, t) = 2a sin (kx) cos (ωt)`
In stationary waves, the particles between the two nodes vibrate with different amplitudes. The amplitude increases from node to antinodes from zero to maximum and then from antinodes to nodes amplitude decreases from maximum to zero. The amplitude of a particle will remain constant, but the amplitude will vary with λ.
∴ `k = (2π)/λ`. This verifies option (a) and rejects option (c).
The particles present at nodes have amplitude zero. Hence, verifies option (e).
We know that particles at nodes are at rest. Therefore, there is no energy transfer. This verifies option (d).
Particles between the two nodes are in the same phase, it means the motion of particles will be either upward or downward. Thus, particles will cross the mean position at the same time. This verifies option (b).
APPEARS IN
RELATED QUESTIONS
Two wires are kept tight between the same pair of supports. The tensions in the wires are in the ratio 2 : 1 the radii are in the ratio 3 : 1 and the densities are in the ratio 1 : 2. Find the ratio of their fundamental frequencies.
A 2 m long string fixed at both ends is set into vibrations in its first overtone. The wave speed on the string is 200 m s−1 and the amplitude is 0⋅5 cm. (a) Find the wavelength and the frequency. (b) Write the equation giving the displacement of different points as a function of time. Choose the X-axis along the string with the origin at one end and t = 0 at the instant when the point x = 50 cm has reached its maximum displacement.
Water waves produced by a motor boat sailing in water are ______.
The displacement of a string is given by y (x, t) = 0.06 sin (2πx/3) cos (120 πt) where x and y are in m and t in s. The length of the string is 1.5 m and its mass is 3.0 × 10−2 kg.
- It represents a progressive wave of frequency 60 Hz.
- It represents a stationary wave of frequency 60 Hz.
- It is the result of superposition of two waves of wavelength 3 m, frequency 60 Hz each travelling with a speed of 180 m/s in opposite direction.
- Amplitude of this wave is constant.
The transverse displacement of a string (clamped at its both ends) is given by y(x, t) = 0.06 sin (2πx/3) cos (120 πt). All the points on the string between two consecutive nodes vibrate with ______.
- same frequency
- same phase
- same energy
- different amplitude.
A sonometer wire is vibrating in resonance with a tuning fork. Keeping the tension applied same, the length of the wire is doubled. Under what conditions would the tuning fork still be is resonance with the wire?
An organ pipe of length L open at both ends is found to vibrate in its first harmonic when sounded with a tuning fork of 480 Hz. What should be the length of a pipe closed at one end, so that it also vibrates in its first harmonic with the same tuning fork?
Two travelling waves produce a standing wave represented by the equation. y = 1.0 mm cos (1.57 cm-1) x sin (78.5 s-1)t. The node closest to the origin in the region x > 0 will be at x = ______ cm.
A tuning fork is vibrating at 250 Hz. The length of the shortest closed organ pipe that will resonate with the tuning fork will be ______ cm.
(Take the speed of sound in air as 340 ms-1.)
A tuning fork of frequency 480 Hz is used in an experiment for measuring the speed of sound (ν) in the air by resonance tube method. Resonance is observed to occur at two successive lengths of the air column, l1 = 30 cm and l2 = 70 cm. Then, ν is equal to ______.