Advertisements
Advertisements
Question
Two farmers Thilagan and Kausigan cultivates three varieties of grains namely rice, wheat and ragi. If the sale (in ₹) of three varieties of grains by both the farmers in the month of April is given by the matrix.
`{:("April sale in" ₹)/("rice" "wheat" "ragi"):}`
A = `[(500, 1000, 1500),(2500, 1500, 500)]"Thilagan"/"Kausigan"`
and the May month sale (in ₹) is exactly twice as that of the April month sale for each variety.
What is the average sales for the months of April and May
Solution
Let A represent the sale on April
A = `[(500, 1000, 1500),(2500, 1500, 500)]`
Let B represent the sale on May
B = `2[(500, 1000, 1500),(2500, 1500, 500)]`
= `[(1000, 2000, 3000),(5000, 3000, 1000)]`
Average sale of the month April and May
= `1/2["A" + "B"]`
= `1/2{[(500, 1000, 1500),(2500, 1500, 500)] + [(1000, 2000, 3000),(5000, 3000, 1000)]}`
= `1/2[(1500, 3000, 4500),(7500, 4500, 1500)]`
= `[(750, 1500, 2250),(3750, 2250, 750)]`
APPEARS IN
RELATED QUESTIONS
Subtract `1/(x^2 + 2)` from `(2x^3 + x^2 + 3)/(x^2 + 2)^2`
Identify rational expression should be subtracted from `(x^2 + 6x + 8)/(x^3 + 8)` to get `3/(x^2 - 2x + 4)`
If A = `(2x + 1)/(2x - 1)`, B = `(2x - 1)/(2x + 1)` find `1/("A" - "B") - (2"B")/("A"^2 - "B"^2)`
If A = `x/(x + 1)` B = `1/(x + 1)` prove that `(("A" + "B")^2 + ("A" - "B")^2)/("A" + "B") = (2(x^2 + 1))/(x(x + 1)^2`
Solve `1/3` (x + y – 5) = y – z = 2x – 11 = 9 – (x + 2z)
In a three-digit number, when the tens and the hundreds digit are interchanged the new number is 54 more than three times the original number. If 198 is added to the number, the digits are reversed. The tens digit exceeds the hundreds digit by twice as that of the tens digit exceeds the unit digit. Find the original number
Simplify `(1/("p") + 1/("q" + "r"))/(1/"p" - 1/("q" + "r")) xx [1 + ("q"^2 + "r"^2 - "p"^2)/(2"qr")]`
Is it possible to design a rectangular park of perimeter 320 m and area 4800 m2? If so find its length and breadth.
At t minutes past 2 pm, the time needed to 3 pm is 3 minutes less than `("t"^2)/4`. Find t.
The number of seats in a row is equal to the total number of rows in a hall. The total number of seats in the hall will increase by 375 if the number of rows is doubled and the number of seats in each row is reduced by 5. Find the number of rows in the hall at the beginning.