Advertisements
Advertisements
Question
Two natural number differ by 3 and their product is 504. Find the numbers.
Solution
Let the required numbers be x and (x+3) According to the question:
`x(x+3)=504`
⇒`x^2+3x=504`
⇒`x^2+3x-504=0`
⇒`x^2+(24-24)x-504=0`
⇒`x^2+24x-24x-504=0`
⇒`x(x-24)-21(x+24)=0`
⇒`(x+24)(x-21)=0`
⇒`x+24=0 or x-21=0`
`⇒x=-24 or x=21`
If x = -24, the numbers are `-24 and{(-24+3)=-21}`
If x =21, the numbers are `21 and {(21+3)=24}`
Hence, the numbers are `(-24,-21) and (21,24)`
APPEARS IN
RELATED QUESTIONS
Solve for x
`(2x)/(x-3)+1/(2x+3)+(3x+9)/((x-3)(2x+3)) = 0, x!=3,`
Solve for x :
`3/(x+1)+4/(x-1)=29/(4x-1);x!=1,-1,1/4`
Solve the following quadratic equations by factorization:
`x^2+(a+1/a)x+1=0`
Solve the following quadratic equations by factorization:
`2(x^2 – 6) = 3 ( x – 4)`
Solve the following quadratic equation for x:
x2 − 4ax − b2 + 4a2 = 0
Solve the following quadratic equation using formula method only
6x2 + 7x - 10 = 0
Solve the equation using the factorisation method:
`(3x -2)/(2x -3) = (3x - 8)/(x + 4)`
Solve the following equation by factorization
x2– 4x – 12 = 0,when x∈N
Two years ago, a man’s age was three times the square of his daughter’s age. Three years hence, his age will be four times his daughter’s age. Find their present ages.
If the area of a square is 400 m2, then find the side of the square by the method of factorization.