Advertisements
Advertisements
Question
Two pipes running together can fill a tank in `11(1)/(9)` minutes. If one pipe takes 5 minutes more than the other to fill the tank, find the time in which each pipe would/fill the tank.
Solution
Let the time taken by one pipe = x minutes
Then time taken by second pipe = (x + 5) minutes
Time taken by both pipes = `11(1)/(9)` minutes
Now according to the condition.
`(1)/x + (1)/(x 5) = (9)/(100)`
⇒ `((x + 5) + x)/(x(x + 5)) = (9)/(100)`
⇒ `(x + 5 + x)/(x^2 + 5x) = (9)/(100)`
⇒ `(2x + 5)/(x^2 + 5x) = (9)/(100)`
⇒ 9x2 + 45x = 200x + 500
⇒ 9x2 + 45x - 200x - 500 = 0
⇒ 9x2 - 155x - 500 = 0
⇒ 9x2 - 180x + 25x - 500 = 0
⇒ 9x(x - 20) + 25(x - 20) = 0
⇒ (x - 20)(9x + 25) = 0
Either x - 20 = 0,
then x = 20.
or
9x + 25 = 0,
then 9x = -25
⇒ x = `(-25)/(9)`
but is not possible as it is in negative.
x = 20
Hence the first pipe can fill the tank in 20minutes
and second pipe can do the same in 20 + 5 = 25minutes.
APPEARS IN
RELATED QUESTIONS
In a class test, the sum of the marks obtained by P in Mathematics and science is 28. Had he got 3 marks more in mathematics and 4 marks less in Science. The product of his marks would have been 180. Find his marks in two subjects.
Solve the following quadratic equation for x:
x2 − 4ax − b2 + 4a2 = 0
Solve the following quadratic equations by factorization:
\[16x - \frac{10}{x} = 27\]
Solve the following quadratic equations by factorization: \[\frac{3}{x + 1} + \frac{4}{x - 1} = \frac{29}{4x - 1}; x \neq 1, - 1, \frac{1}{4}\]
If \[\left( a^2 + b^2 \right) x^2 + 2\left( ab + bd \right)x + c^2 + d^2 = 0\] has no real roots, then
Solve the following equation: (x-8)(x+6) = 0
In each of the following determine whether the given values are solutions of the equation or not.
x2 + x + 1 = 0; x = 1, x = -1.
Solve the following equation by factorization
`a/(ax - 1) + b/(bx - 1) = a + b, a + b ≠ 0, ab ≠ 0`
Which of the following are the roots of the quadratic equation, x2 – 9x + 20 = 0 by factorisation?
Solve the following quadratic equation by factorisation method:
x2 + x – 20 = 0