Advertisements
Advertisements
Question
Two squares have sides A cm and (x + 4) cm. The sum of their areas is 656 sq. cm.Express this as an algebraic equation and solve it to find the sides of the squares.
Solution
Side of first square = x cm .
and side of second square = (x + 4) cm
Now according to the condition,
(x)2 + (x + 4)2 = 656
⇒ x2 – x2 + 8x + 16 = 656
⇒ 2x2 + 8x + 16 – 656 = 0
⇒ 2x2 + 8x – 640 = 0
⇒ x2 + 4x – 320 = 0 ...(Dividing by 2)
⇒ x2 + 20x – 16x – 320 = 0
⇒ x(x + 20) – 16(x + 20) = 0
⇒ (x + 20)(x – 16) = 0
EIther x + 20 = 0,
then x = –20,
but it not possible as it is in negative.
or
x – 16 = 0 then x = 16
Side of first square = 16 cm
and side of second square = 16 + 4 – 4 = 20 cm.
APPEARS IN
RELATED QUESTIONS
Solve the following quadratic equations by factorization:
`1/((x-1)(x-2))+1/((x-2)(x-3))+1/((x-3)(x-4))=1/6`
Solve the following quadratic equations by factorization:
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3`, x ≠ 2, 4
The sum of a numbers and its positive square root is 6/25. Find the numbers.
A train covers a distance of 90 km at a uniform speed. Had the speed been 15 km/hour more, it would have taken 30 minutes less for a journey. Find the original speed of the train.
The sum of two natural numbers is 20 while their difference is 4. Find the numbers.
Solve the following quadratic equations by factorization: \[\frac{2}{x + 1} + \frac{3}{2(x - 2)} = \frac{23}{5x}; x \neq 0, - 1, 2\]
If the equation x2 + 4x + k = 0 has real and distinct roots, then
If ax2 + bx + c = 0 has equal roots, then c =
Solve equation using factorisation method:
`6/x = 1 + x`
If the product of two consecutive even integers is 224, find the integers.