Advertisements
Advertisements
Question
Use a graph paper for this question (take 10 small divisions = 1 unit on both axis).
Plot the points P (3, 2) and Q (-3, -2), from P and Q draw perpendicular PM and QN on the X- axis.
(i) Name the image of P on reflection at the origin.
(ii) Assign, the. special name to the geometrical figure. PMQN and find its area.
(iii) Write the co-ordinates of the point to which M is mapped on reflection in (i) X- axis,
(ii) Y-axis, (iii) origin.
Solution
In the graph paper
(i) Q (-3, -2)
(ii) Parallelgoram;
Area of ΔPMN
= `(1)/(2) "PM" xx "MN"`
= `(1)/(2) xx 2 xx 63`
∴ Area of PMQN
= 2 x ΔPMN
= 2 x 6
= 12 square unit
(iii) Co-ordinates of M(3, 0)
(i) (3, 0), (ii) (-3, 0), (iii) (-3, 0).
APPEARS IN
RELATED QUESTIONS
A point P is reflected in the origin. Co-ordinates of its image are (–2, 7). Find the co-ordinates of P.
The point A(4, 6) is first reflected in the origin to point A’. Point A’ is then reflected in the y-axis to the point A”.
- Write down the co-ordinates of A”.
- Write down a single transformation that maps A onto A”.
The triangle ABC, where A is (2, 6), B is (-3, 5) and C is (4, 7), is reflected in the y-axis to triangle A’B’C’. Triangle A’B’C’ is then reflected in the origin to triangle A”B”C”.
(i) Write down the co-ordinates of A”, B” and C”.
(ii) Write down a single transformation that maps triangle ABC onto triangle A”B”C”.
P and Q have co-ordinates (–2, 3) and (5, 4) respectively. Reflect P in the x-axis to P’ and Q in the y-axis to Q’. State the co-ordinates of P’ and Q’.
Point A (4, –1) is reflected as A’ in the y-axis. Point B on reflection in the x-axis is mapped as B’ (–2, 5). Write down the co-ordinates of A’ and B.
State the co-ordinates of the images of the following point under reflection in the origin:
(-1,-4)
State the co-ordinates of the images of the following point under reflection in the origin:
(2, 7)
State the co-ordinates of the images of the following point under reflection in the origin:
(9,-9)
Find the co-ordinates of the images of the following under reflection in the origin:
`((-5)/(2),(-1)/(2))`
Point A (2, -4) is reflected in origin as A’. Point B (- 3, 2) is reflected on X-axis as B’.
(i) Write the co-ordinates of A’.
(ii) Write the co-ordinates of B’.
(iii) Calculate the distance A’B’.
Give your answer correct to 1 decimal place, (do not consult tables).