Advertisements
Advertisements
Question
Use the Remainder Theorem to factorise the following expression:]
`2x^3 + x^2 - 13x + 6`
Solution
f(x) = 2x3 + x2 – 13x + 6
Factors of constant term 6 are ±1, ±2, ±3, ±6.
By hit and trail, putting x = 2, f(2) = 2(2)3 + 22 – 13 (2) + 6 = 0,
Hence (x – 2) is a factor of f(x) using factor theorem
So f(x)= 2x2 (x – 2) + 5x (x – 2) – 3 (x – 2)
= (x – 2) (2x2 + 5x – 3)
= (x – 2) [2x2 + 6x – x – 3]
= (x – 2) [2x (x + 3) – (x + 3)]
= (x – 2) (x + 3) (2x – 1)
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + π.
Find the remainder when x4 – 3x2 + 2x + 1 is divided by x – 1.
Find the value of a, if the division of ax3 + 9x2 + 4x – 10 by x + 3 leaves a remainder 5.
Find ‘a‘ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leave the same remainder when divided by x + 3.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Find the values of p and q in the polynomial f(x)= x3 - px2 + 14x -q, if it is exactly divisible by (x-1) and (x-2).
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 6x2 + 2x – 4, g(x) = `1 - 3/2 x`
Check whether p(x) is a multiple of g(x) or not:
p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1
If the polynomials az3 + 4z2 + 3z – 4 and z3 – 4z + a leave the same remainder when divided by z – 3, find the value of a.