Advertisements
Advertisements
Question
Use a suitable identity to get the following products.
`(3a - 1/2)(3a - 1/2)`
Solution
The product will be as follows
`(3a - 1/2)(3a - 1/2) = (3a - 1/2)^2`
`= (3a)^2 - 2(3a) (1/2) + (1/2)^2 [(a-b)^2 = a^2 - 2ab + b^2]`
= `9a^2 - 3a + 1/4`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify (4m + 5n)2 + (5m + 4n)2
Using a2 − b2 = (a + b) (a − b), find 1532 − 1472
Using a2 − b2 = (a + b) (a − b), find 12.12 − 7.92
Expand (5a + 6b)2
Expand `("x"+1/2)^2`
Use an expansion formula to find the value.
(1005)2
`(("a" + "b")("a"^3 - "b"^3))/(("a"^2 - "b"^2))` = ___________
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
2x3 + 24x2 + 72x
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
a2x3 + 2abx2 + b2x
If a + b = 25 and a2 + b2 = 225, then find ab.