Advertisements
Advertisements
Question
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
a2x3 + 2abx2 + b2x
Sum
Solution
We have,
a2x3 + 2abx2 + b2x
= x(a2x2 + 2abx + b2)
= x[(ax)2 + 2 · ax · b + b2]
= x(ax + b)2
= x(ax + b)(ax + b)
shaalaa.com
Is there an error in this question or solution?
Chapter 7: Algebraic Expression, Identities and Factorisation - Exercise [Page 234]
APPEARS IN
RELATED QUESTIONS
Simplify (4m + 5n)2 + (5m + 4n)2
Using identities, evaluate 1022
Using a2 − b2 = (a + b) (a − b), find (1.02)2 − (0.98)2
Use the formula to find the value.
502 × 498
Use the formula to find the value.
97 × 103
Use a formula to multiply of (2t – 5)(2t + 5)
(a + b)2 – 2ab = ______ + ______.
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
a2x2 + 2abxy + b2y2
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
16x2 + 40x + 25
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
4x4 + 12x3 + 9x2