Advertisements
Advertisements
Question
Verify A(BC) = (AB)C of the following case:
A = `[(2, 4, 3),(-1, 3, 2)], "B" = [(2, -2),(3, 3),(-1, 1)], "C" = [(3, 1),(1, 3)]`
Solution
BC = `[(2, -2),(3, 3),(-1, 1)] [(3, 1),(1, 3)]`
= `[(6 - 2, 2 - 6),(9 + 3, 3 + 9),(-3 + 1, -1 + 3)]`
= `[(4, -4),(12, 12),(-2, 2)]`
∴ A(BC) = `[(2, 4, 3),(-1, 3, 2)] [(4, -4),(12, 12),(-2, 2)]`
= `[(8 + 48 - 6, -8 + 48 + 6),(-4 + 36 - 4, 4 + 36 + 4)]`
= `[(50, 46),(28, 44)]` ...(1)
AB = `[(2, 4, 3),(-1, 3, 2)] [(2, -2),(3, 3),(-1, 1)]`
= `[(4 + 12 - 3, -4 + 12 + 3),(-2 + 9 - 2, 2 + 9 + 2)]`
= `[(13, 11),(5, 13)]`
∴ (AB)C = `[(13, 11),(5, 13)] [(3, 1),(1, 3)]`
= `[(39 + 11, 13 + 33),(15 + 13, 5 + 39)]`
= `[(50, 46),(28, 44)]` ...(2)
From (1) and (2), A(BC) = (AB)C.
APPEARS IN
RELATED QUESTIONS
If A = `[(1, -3),(4, 2)], "B" = [(4, 1),(3, -2)]` show that AB ≠ BA.
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)], "B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`. State whether AB = BA? Justify your answer.
Show that AB = BA where,
A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)], "B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`
Show that AB = BA where,
A = `[(costheta, - sintheta),(sintheta, costheta)], "B" = [(cosphi, -sinphi),(sinphi, cosphi)]`
If A = `[(4, 8),(-2, -4)]`, prove that A2 = 0
If A = `[(1, -2),(5, 6)], "B" = [(3, -1),(3, 7)]`, Find AB - 2I, where I is unit matrix of order 2.
A = `[(alpha, 0),(1, 1)], "B" = [(1, 0),(2, 1)]` find α, if A2 = B.
If A = `[(8, 4),(10, 5)], "B" = [(5, -4),(10, -8)]` show that (A + B)2 = A2 + AB + B2
If A = `[(3, 4),(-4, 3)] and "B" = [(2, 1),(-1, 2)]`, show that (A + B)(A – B) = A2 – B2
If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and if (A + B)2 = A2 + B2 . find values of a and b
Find x, if `[(1, "x", 1)][(1, 2, 3),(4, 5, 6),(3, 2, 5)] [(1),(-2), (3)]` = 0
Find x and y, if `{4[(2, -1, 3),(1, 0, 2)] -[(3, -3, 4),(2, 1, 1)]} [(2),(-1),(1)] = [(x),(y)]`
Find x, y, z if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)]` = `[("x" - 3),("y" - 1),(2"z")]`
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, show that `"A"^2=[(cos2alpha, sin2alpha),(-sin2alpha, cos2alpha)]`
If A = `[(1, 2),(3, 5)]` B = `[(0, 4),(2, -1)]`, show that AB ≠ BA, but |AB| = IAl·IBI
Select the correct option from the given alternatives:
If `[(5, 7),(x, 1),(2, 6)] - [(1, 2),(-3, 5),(2, y)] = [(4, 5),(4, -4),(0, 4)]` then __________
Select the correct option from the given alternatives:
If A + B = `[(7, 4),(8, 9)]` and A − B = `[(1, 2),(0, 3)]` then the value of A is _______
Select the correct option from the given alternatives:
If `[("x", 3"x" - "y"),("zx" + "z", 3"y" - "w")] = [(3, 2),(4, 7)]` then ______
Answer the following question:
If f(α) = A = `[(cosalpha, -sinalpha, 0),(sinalpha, cosalpha, 0),(0, 0, 1)]`, Find f(– α)
Answer the following question:
If f (α) = A = `[(cosalpha, -sinalpha, 0),(sinalpha, cosalpha, 0),(0, 0, 1)]`, Find f(–α) + f(α)
Answer the following question:
If Aα = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, show that Aα . Aβ = Aα+β
Answer the following question:
If A = `[(3, -5),(-4, 2)]`, show that A2 – 5A – 14I = 0
Answer the following question:
if A = `[(-3, 2),(2, -4)]`, B = `[(1, x),(y, 0)]`, and (A + B)(A – B) = A2 – B2 , find x and y
Answer the following question:
If A = `[(0, 1),(1, 0)]` and B = `[(0, -1),(1, 0)]` show that (A + B)(A – B) ≠ A2 – B2
Answer the following question:
Find x, y if, `{-1 [(1, 2, 1),(2, 0, 3)] + 3[(2, -3, 7),(1, -1, 3)]} [(5),(0),(-1)] = [(x),(y)]`
Answer the following question:
Find x, y, z if `{5[(0, 1),(1, 0),(1, 1)] -3[(2, 1),(3, -2),(1, 3)]} [(2),(1)] = [(x - 1),(y + 1),(2z)]`
Answer the following question:
Two farmers Shantaram and Kantaram cultivate three crops rice,wheat and groundnut. The sale (In Rupees) of these crops by both the farmers for the month of April and may 2008 is given below,
April sale (In Rs.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 15000 | 13000 | 12000 |
Kantaram | 18000 | 15000 | 8000 |
May sale (In Rs.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 18000 | 15000 | 12000 |
Kantaram | 21000 | 16500 | 16000 |
Find the increase in sales from April to May for every crop of each farmer.