Advertisements
Advertisements
Question
Verify the property x × (y × z) = (x × y) × z of rational numbers by using
`x = 1, y = (-1)/2` and `z = 1/4`
and What is the name of this property?
Solution
Given, `x = 1, y = (-1)/2` and `z = 1/4`
Now, LHS = x × (y × z)
= `1 xx ((-1)/2 xx 1/4)`
= `1 xx (-1)/8`
= `(-1)/8`
And RHS = (x × y) × z
= `(1 xx (-1)/2) xx 1/4`
= `(-1)/2 xx 1/4`
= `(-1)/8`
∴ LHS = RHS
Hence, x × (y × z) = (x × y) × z
APPEARS IN
RELATED QUESTIONS
Tell what property allows you to compute `1/3 xx(6xx4/3)` as `(1/3 xx 6) xx 4/3`
Verify associativity of addition of rational numbers i.e., (x + y) + z = x + (y + z), when:
Verify associativity of addition of rational numbers i.e., (x + y) + z = x + (y + z), when:
Verify associativity of addition of rational numbers i.e., (x + y) + z = x + (y + z), when:
Find: `(-4)/5 xx 3/7 xx 15/16 xx ((-14)/9)`.
Verify the associative property for addition and multiplication for the rational number `(-7)/9, 5/6` and `(-4)/3`
`1/2 - (3/4 - 5/6) ≠ (1/2 - 3/4) - 5/6` illustrates that subtraction does not satisfy the ________ property for rational numbers
Which of the following expressions shows that rational numbers are associative under multiplication?
Name the property used in the following.
`1/3 + [4/9 + ((-4)/3)] = [1/3 + 4/9] + [(-4)/3]`
Verify the property x × (y × z) = (x × y) × z of rational numbers by using
`x = 0, y = 1/2` and `z = 1/4`
and What is the name of this property?