Advertisements
Advertisements
Question
Verify whether the function f defined by f(x) = `{(x sin (1/x)",", x ≠ 0), (0",", x = 0):}` is continuous at x = 0 or not.
Sum
Solution
Given, f(x) = `{(x sin (1/x)",", x ≠ 0), (0",", x = 0):}`
for a continuous function, LHL = RHL = f(a)
Now, LHL = `lim_(x->0^-) x sin 1/x`
= `lim_(h->0) (0 - h) sin (1/ (0 - h))`
= `lim_(h->0) - h sin (-1/h)`
= `lim_(h -> 0) h sin (1/h)` ...[sin (−∞) = − sin θ]
= 0 × sin (∞)
= 0
and RHL = `lim_(x->0^+) x sin 1/x`
= `lim_(h->0) (0 + h) sin (1/(0 + h))`
= `lim_(h->0) h sin (1/h)`
= 0.sin(∞) = 0
So, LHL = RHL = f(0)
Hence, f(x) is continuous at x = 0
shaalaa.com
Is there an error in this question or solution?