Advertisements
Advertisements
Question
What are alloys?
Solution
An alloy is a blend of metals prepared by mixing the components. Alloys may be homogeneous solid solutions in which the atoms of one metal are distributed randomly among the atoms of the other.
APPEARS IN
RELATED QUESTIONS
Why is Sc3+ colourless while Ti3+ coloured? (Atomic number Sc = 21, Ti =22)
What are interstitial compounds?
Why are Mn2+ compounds more stable than Fe2+ towards oxidation to their +3 state?
Compare the stability of +2 oxidation state for the elements of the first transition series.
How would you account for the following?
Zr (Z = 40) and Hf (Z = 72) have almost identical radii.
Why does the density of transition elements increase from Titanium to Copper? (at. no. Ti = 22,
Cu = 29)
Why do transition metal ions possess a great tendency to form complexes?
Why do transition metals exhibit higher enthalpy of atomization?
Why first ionisation enthalpy of Cr is lower than that of Zn?
Match the solutions given in Column I and the colours given in Column II.
Column I (Aqueous solution of salt) |
Column II (Colour) |
(i) \[\ce{FeSO2.7H2O}\] | (a) Green |
(ii) \[\ce{NiCl2.4H2O}\] | (b) Light pink |
(iii) \[\ce{MnCl2.4H2O}\] | (c) Blue |
(iv) \[\ce{CoC12,6H2O}\] | (d) Pale green |
(v) \[\ce{Cu2 Cl2}\] | (e) Pink |
(f) Colourless |
Assertion: \[\ce{Cu}\] cannot liberate hydrogen from acids.
Reason: Because it has positive electrode potential.
Fill in the blanks by choosing the appropriate word(s) from those given in the brackets:
(activation energy, Threshold energy, increased, lowered, partially, full, d-d transition, Benzoic acid, benzaldehyde)
Only those transition metal ions will be coloured which have ______ filled d-orbitals facilitating ______.
Read the passage given below and answer the following question.
Are there nuclear reactions going on in our bodies? There are nuclear reactions constantly occurring in our bodies, but there are very few of them compared to the chemical reactions, and they do not affect our bodies much. All of the physical processes that take place to keep a human body running are chemical processes. Nuclear reactions can lead to chemical damage, which the body may notice and try to fix. The nuclear reaction occurring in our bodies is radioactive decay. This is the change of a less stable nucleus to a more stable nucleus. Every atom has either a stable nucleus or an unstable nucleus, depending on how big it is and on the ratio of protons to neutrons. The ratio of neutrons to protons in a stable nucleus is thus around 1 : 1 for small nuclei (Z < 20). Nuclei with too many neutrons, too few neutrons, or that are simply too big are unstable. They eventually transform to a stable form through radioactive decay. Wherever there are atoms with unstable nuclei (radioactive atoms), there are nuclear reactions occurring naturally. The interesting thing is that there are small amounts of radioactive atoms everywhere: in your chair, in the ground, in the food you eat, and yes, in your body. The most common natural radioactive isotopes in humans are carbon-14 and potassium-40. Chemically, these isotopes behave exactly like stable carbon and potassium. For this reason, the body uses carbon-14 and potassium-40 just like it does normal carbon and potassium; building them into the different parts of the cells, without knowing that they are radioactive. In time, carbon-14 atoms decay to stable nitrogen atoms and potassium-40 atoms decay to stable calcium atoms. Chemicals in the body that relied on having a carbon-14 atom or potassium-40 atom in a certain spot will suddenly have a nitrogen or calcium atom. Such a change damages the chemical. Normally, such changes are so rare, that the body can repair the damage or filter away the damaged chemicals. The natural occurrence of carbon-14 decay in the body is the core principle behind carbon dating. As long as a person is alive and still eating, every carbon-14 atom that decays into a nitrogen atom is replaced on average with a new carbon-14 atom. But once a person dies, he stops replacing the decaying carbon-14 atoms. Slowly the carbon-14 atoms decay to nitrogen without being replaced, so that there is less and less carbon-14 in a dead body. The rate at which carbon-14 decays is constant and follows first order kinetics. It has a half-life of nearly 6000 years, so by measuring the relative amount of carbon-14 in a bone, archeologists can calculate when the person died. All living organisms consume carbon, so carbon dating can be used to date any living organism, and any object made from a living organism. Bones, wood, leather, and even paper can be accurately dated, as long as they first existed within the last 60,000 years. This is all because of the fact that nuclear reactions naturally occur in living organisms. |
Which are the two most common radioactive decays happening in human body?
Which of the following is non-metallic?
Catalytic hydrogenation of benzene gives
Match List - I with List - II
List - I | List - II | ||
(a) | \[\ce{[Fe(CN)6]^3-}\] | (i) | 5.92 BM |
(b) | \[\ce{[Fe(H2O)6]^3+}\] | (ii) | 0 BM |
(c) | \[\ce{[Fe(CN)6]^4-}\] | (iii) | 4.90 BM |
(d) | \[\ce{[Fe(H2O)6]^2+}\] | (iv) | 1.73 BM |
Choose the correct answer from the options given below.
Assertion (A): Transition metals have high enthalpy of atomisation.
Reason (R): Greater number of unpaired electrons in transition metals results in weak metallic bonding.
In order to protect iron from corrosion, which one will you prefer as a sacrificial electrode, Ni or Zn? Why? (Given standard electrode potentials of Ni, Fe and Zn are -0.25 V, -0.44 V and -0.76 V respectively.)
Give a reason for the following:
Zinc, cadmium and mercury are considered as d-block elements but not regarded as transition elements.
Compare the general characteristics of the first series of the transition metals with those of the second and third series metals in the respective vertical columns. Give special emphasis on the following point:
Oxidation states