Advertisements
Advertisements
Question
What must be added to 3x3 + x2 − 22x + 9 so that the result is exactly divisible by 3x2 + 7x − 6?
Solution
By division algorithm, when p(x) = 3x3 + x2 − 22x + 9 is divided by `3x^2 + 7x - 6,`the reminder is a linear polynomial. So, let r(x) = ax + b be added to p(x) so that the result is divisible by q(x)
Let
`f(x) = p(x) + r(x)`
` = 3x^2 + x^2 - 22x + 9 ax +b`
` = 3x^2 + x^2 +(a- 22) x + 9 + b`
We have
\[q\left( x \right) = 3 x^2 + 7x - 6\]
\[ = 3 x^2 + 9x - 2x - 6\]
\[ = 3x\left( x + 3 \right) - 2\left( x + 3 \right)\]
\[ = \left( 3x - 2 \right) \left( x + 3 \right)\]
Clearly,
are factors of q(x).
Therefore, f(x) will be divisible by q(x) if (3x - 2)and (x + 3)are factors of f(x), i.e.,
`f (2/3)`and f(−3) are equal to zero.
Now,
\[f\left( \frac{2}{3} \right) = 0\]
\[ \Rightarrow 3 \left( \frac{2}{3} \right)^3 + \left( \frac{2}{3} \right)^2 + \left( a - 22 \right)\left( \frac{2}{3} \right) + 9 + b = 0\]
\[ \Rightarrow 3 \times \frac{8}{27} + \frac{4}{9} + \frac{2a}{3} - \frac{44}{3} + 9 + b = 0\]
\[ \Rightarrow \frac{8}{9} + \frac{4}{9} - \frac{44}{3} + 9 + \frac{2a}{3} + b = 0\]
\[ \Rightarrow \frac{8 + 4 - 132 + 81}{9} + \frac{2a}{3} + b = 0\]
\[ \Rightarrow - \frac{39}{9} + \frac{2a}{3} + b = 0\]
\[ \Rightarrow \frac{2a}{3} + b = \frac{13}{3}\]
\[ \Rightarrow 2a + 3b = 13 . . . . . . . . \left( i \right)\]
And
\[f\left( - 3 \right) = 0\]
\[ \Rightarrow 3 \left( - 3 \right)^3 + \left( - 3 \right)^2 + \left( a - 22 \right)\left( - 3 \right) + 9 + b = 0\]
\[ \Rightarrow - 81 + 9 - 3a + 66 + 9 + b = 0\]
\[ \Rightarrow - 3a + b = - 3 \]
\[ \Rightarrow b = - 3 + 3a . . . . . . . . . \left( ii \right)\]
Substituting the value of b from (ii) in (i), we get,
\[2a + 3\left( 3a - 3 \right) = 13\]
\[ \Rightarrow 2a + 9a - 9 = 13\]
\[ \Rightarrow 11a = 13 + 9\]
\[ \Rightarrow 11a = 22\]
\[ \Rightarrow a = 2\]
Now, from (ii), we get
\[b = - 3 + 3\left( 2 \right) = - 3 + 6 = 3\]
So, we have a = 2 and b = 3
Hence, p(x) is divisible by q(x), if 2x + 3is added to it.
APPEARS IN
RELATED QUESTIONS
f(x) = x3 − 6x2 + 2x − 4, g(x) = 1 − 2x
f(x) = x3 −6x2 − 19x + 84, g(x) = x − 7
f(x) = 2x3 − 9x2 + x + 12, g(x) = 3 − 2x
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
x3 − 3x2 − 9x − 5
Factorize of the following polynomials:
4x3 + 20x2 + 33x + 18 given that 2x + 3 is a factor.
If x + 1 is a factor of the polynomial 2x2 + kx, then k =
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then
Factorise the following:
a2 + 10a – 600
(x + y)(x2 – xy + y2) is equal to