Advertisements
Advertisements
Question
Which of the following number square of even number?
5476
Solution
The numbers whose last digit is odd can never be the square of even number. use prime factorisation method and make pairs of equal factor.
5476 = 2 x 2 x 37 x 37
= (2 x 2) x (37 x 37)
There are no factors that are not paired. Hence, 5476 is a perfect square. The square of an even number is always even. Hence, 5476 is the square of an even number.
APPEARS IN
RELATED QUESTIONS
Find the square of the given number.
35
Which of the following triplets are pythagorean?
(8, 15, 17)
Observe the following pattern
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) = \frac{2 \times 3 \times 4}{3}\]
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) = \frac{3 \times 4 \times 5}{3}\]
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) + \left( 4 \times 5 \right) = \frac{4 \times 5 \times 6}{3}\]
and find the value of(1 × 2) + (2 × 3) + (3 × 4) + (4 × 5) + (5 × 6)
Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :
12 + 22 + 32 + 42 + ... + 102
Find the squares of the following numbers using column method. Verify the result by finding the square using the usual multiplication:
37
Find the squares of the following numbers using diagonal method:
295
Find the squares of the following numbers using diagonal method:
171
If m is the square of a natural number n, then n is ______.
There are ______ natural numbers between n2 and (n + 1)2