Advertisements
Advertisements
Question
Without solving the following quadratic equation, find the value of 'm' for which the given equation has real and equal roots.
x2 + 2(m – 1)x + (m + 5) = 0
Solution
x2 + 2(m – 1)x + (m + 5) = 0
Equating with ax2 + bx + c = 0
a = 1, b = 2(m – 1), c = (m + 5)
Since equation has real and equal roots.
So, D = 0
`=>` b2 – 4ac = 0
`=>` [2(m – 1)2 – 4 × 1 × (m + 5) = 0
`=>` 4(m – 1)2 – 4 (m + 5) = 0
`=>` 4[m2 – 2m + 1 – m – 5)] = 0
`=>` m2 – 3m – 4 = 0
`=>` (m + 1)(m – 4) = 0
Either m + 1 = 0 or m – 4 = 0
`=>` m = –1 or m = 4
Hence, the values of m are –1, 4.
APPEARS IN
RELATED QUESTIONS
Solve the following equation:
`x - 18/x = 6` Give your answer correct to two significant figures.
If x = −2 is a root of the equation 3x2 + 7x + p = 1, find the values of p. Now find the value of k so that the roots of the equation x2 + k(4x + k − 1) + p = 0 are equal.
Determine the nature of the roots of the following quadratic equation :
2x2 -3x+ 4= 0
Determine, if 3 is a root of the given equation
`sqrt(x^2 - 4x + 3) + sqrt(x^2 - 9) = sqrt(4x^2 - 14x + 16)`.
Find the value(s) of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also find these roots.
(x2 + 1)2 – x2 = 0 has ______.
A quadratic equation with integral coefficient has integral roots. Justify your answer.
Find the value(s) of 'a' for which the quadratic equation x2 – ax + 1 = 0 has real and equal roots.
The probability of selecting integers a ∈ [–5, 30] such that x2 + 2(a + 4)x – 5a + 64 > 0, for all x ∈ R, is ______.
Complete the following activity to determine the nature of the roots of the quadratic equation x2 + 2x – 9 = 0 :
Solution :
Compare x2 + 2x – 9 = 0 with ax2 + bx + c = 0
a = 1, b = 2, c = `square`
∴ b2 – 4ac = (2)2 – 4 × `square` × `square`
Δ = 4 + `square` = 40
∴ b2 – 4ac > 0
∴ The roots of the equation are real and unequal.