Advertisements
Advertisements
Question
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Pt_{(s)} | Br^- (0.010 M) | Br2_{(l)} || H^+ (0.030 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]
Solution
The cell reaction is as follows:
\[\ce{2Br^- (0.010 M) + 2H^+ (0.030 M) -> Br2_{(l)} + H2 (1 bar)}\]
Hence, n = 2,
According to the Nernst equation for the cell, the emf is given below:
`"E"_"cell" = ("E"_("H"^+//1/2"H"_2)^Θ - "E"_(1/2"Br"_2//"Br"^-)^Θ) - 0.059/2 log_10 ("pH"_2)/(["Br"^-]^2["H"^+]^2)`
= `[0 - (+ 1.08)] - 0.059/2 log_10 1/((0.010)^2 (0.030)^2)`
= `-1.08 - 0.059/2 log_10 (1.11 xx 10^7)`
= −1.08 − 0.208
= −1.288 V
RELATED QUESTIONS
How much charge is required for the reduction of 1 mol of Zn2+ to Zn?
Calculate emf of the following cell at 298 K:
Mg(s) | Mg2+(0.1 M) || Cu2+ (0.01) | Cu(s)
[Given Eocell = +2.71 V, 1 F = 96500 C mol–1]
Calculate the value of Ecell at 298 K for the following cell:
`(Al)/(Al^(3+)) (0.01M) || Sn^(2+) ((0.015 M))/(Sn)`
`E° _(Al^(3+))/(AI)= -1.66 " Volt and " E° _(Sn^(2+)) /(Sn) = -0.14` volt
Complete the following statement by selecting the correct alternative from the choices given:
For a spontaneous reaction ΔG° and E° cell will be respectively:
For a general electrochemical reaction of the type:
\[\ce{{a}A + {b}B ⇔ {c}C + {d}D}\]
Nernst equation can be written as:
What is the pH of HCl solution when the hydrogen gas electrode shows a potential of −0.59 V at standard temperature and pressure?
Calculate the value of \[\ce{E^\circ}\]cell, E cell and ΔG that can be obtained from the following cell at 298 K.
\[\ce{Al/Al^3+ _{(0.01 M)} // Sn^{2+} _{(0.015 M)}/Sn}\]
Given: \[\ce{E^\circ Al^3+/Al = -1.66 V; E^\circ\phantom{.}Sn^2+/Sn = -0.14 V}\]
Calculate the value of ΔG that can be obtained from the following cell at 298K.
`(Al)/(Al3+) (0.01M) || (Sn^(2+) (0.015M))/(Sn)`
`E^\circ (Al^(3+))/(Al) = -1.66 V; E^\circ (Sn^(2+))/(Sn) = -0.14 V`
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Fe_{(s)} | Fe^{2+} (0.001 M) || H^+ (1 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Sn_{(s)} | Sn^{2+} (0.050 M) || H^+ (0.020 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]