Advertisements
Advertisements
Question
`(x+3)/(x-2)-(1-x)/x=17/4`
Solution
`((x+3))/((x-2))-((1-x))/x=17/4`
⇒`( x(x+3)-(1-x)(x-2))/((x-2)x)=17/4`
⇒` x^2+3x-(x-2-x^2+2x)/(x^2-2x)=17/4`
⇒ `(x^2+3x+x^2-3x+2)/(x^2-2x)=17/4`
⇒ `(2x^2+2)/(x^2-2x)=17/4`
⇒`8x^2+8=17x^2-34x` [On cross multiplying]
⇒` -9x^2+34x-8=0`
⇒` 9x^2-34x-8=0`
⇒`9x(x-4) +2(x-4)=0`
⇒`(x-4) (9x+2)=0`
⇒`x-4=0 or 9x+2=0`
⇒` x=4 or x=(-2)/9`
Hence, the roots of the equation are 4 and `-2/9`
APPEARS IN
RELATED QUESTIONS
In the following, determine whether the given values are solutions of the given equation or not:
2x2 - x + 9 = x2 + 4x + 3, x = 2, x =3
Solve (x2 – 3x)2 – 16(x2 – 3x) – 36 =0
Solve `(2x)/(x - 3) + 1/(2x + 3) + (3x + 9)/((x - 3)(2x +3)) = 0; x != 3, x != - 3/2`
Which of the following are quadratic equation in x?
`sqrt2x^2+7x+5sqrt2`
`a/((ax-1))+b/((bx-1))=(a+b),x≠1/a,1/b`
Solve equation using factorisation method:
`9/2 x = 5 + x^2`
Solve:
`sqrt(x/(x - 3)) + sqrt((x - 3)/x) = 5/2`
In each of the following, determine whether the given numbers are solutions of the given equation or not: `x^2 - sqrt(2)x - 4 = 0, x = -sqrt(2),2sqrt(2)`
Solve the following equation by using formula :
2x2 – 3x – 1 = 0
The value (values) of x satisfying the equation x2 – 6x – 16 = 0 is ______.