Advertisements
Advertisements
Question
यदि a + b + c = 5 और ab + bc + ca = 10 है, तो सिद्ध कीजिए कि a3 + b3 + c3 – 3abc = – 25 है।
Solution
दिया गया है - a + b + c = 5 और ab + bc + ca = 10
हम जानते हैं कि - a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= (a + b + c)[a2 + b2 + c2 – (ab + bc + ca)]
= 5{a2 + b2 + c2 – (ab + bc + ca)}
= 5(a2 + b2 + c2 – 10)
दिया गया है - a + b + c = 5
अब, दोनों पक्षों का वर्ग करने पर, हम पाते हैं - (a + b + c)2 = 52
a2 + b2 + c2 + 2(ab + bc + ca) = 25
a2 + b2 + c2 + 2 × 10 = 25
a2 + b2 + c2 = 25 – 20
= 5
अब, a3 + b3 + c3 – 3abc = 5(a2 + b2 + c2 – 10)
= 5 × (5 – 10)
= 5 × (–5)
= –25
अतः, सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
गुणनखंड ज्ञात कीजिए:
6x2 + 5x – 6
गुणनखंड ज्ञात कीजिए:
x3 + 13x2 + 32x + 20
निम्नलिखित में x2 का गुणांक लिखिए :
(2x – 5)(2x2 – 3x + 1)
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
गुणनखंड कीजिए :
84 – 2r – 2r2
निम्नलिखित के गुणनखंड कीजिए :
`(2x + 1/3)^2 - (x - 1/2)^2`
निम्नलिखित के गुणनखंड कीजिए :
`8p^3 + 12/5 p^2 + 6/25 p + 1/125`
गुणनखंड कीजिए :
1 + 64x3
घनों का वास्तविक रूप से परिकलन किए बिना निम्नलिखित का मान ज्ञात कीजिए :
`(1/2)^3 + (1/3)^3 - (5/6)^3`
उस आयत की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिए जिसका क्षेत्रफल 4a2 + 4a – 3 हैं।