Advertisements
Advertisements
Question
यदि a, b और c में से प्रत्येक शून्येतर है तथा a + b + c = 0 है, तो सिद्ध कीजिए कि `a^2/(bc) + b^2/(ca) + c^2/(ab) = 3` है।
Solution
सिद्ध करने के लिए, `a^2/(bc) + b^2/(ca) + c^2/(ab) = 3`
हम जानते हैं कि, a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= 0(a2 + b2 + c2 – ab – bc – ca) ...[∵ a + b + c = 0, दिया गया है।]
= 0
⇒ a3 + b3 + c3 = 3abc
दोनों पक्षों को abc से भाग देने पर, हम पाते हैं।
`a^3/(abc) + b^3/(abc) + c^3/(abc) = 3`
⇒ `a^2/(bc) + b^2/(ac) + c^2/(ab) = 3`
अतः, सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थिति में (x - 1), p(x) का एक गुणनखंड हो:
p(x) = kx2 - 3x + k
गुणनखंड ज्ञात कीजिए:
6x2 + 5x – 6
गुणनखंड ज्ञात कीजिए:
x3 - 2x2 - x + 2
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
गुणनखंड कीजिए :
2x2 – 7x – 15
गुणनखंड कीजिए :
x3 – 6x2 + 11x – 6
निम्नलिखित के गुणनखंड कीजिए :
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
निम्नलिखित के गुणनखंड कीजिए :
`8p^3 + 12/5 p^2 + 6/25 p + 1/125`
बिना वास्तविक विभाजन के सिद्ध कीजिए कि x2 – 3x + 2 से 2x4 – 5x3 + 2x2 – x + 2 विभाज्य है। [संकेत: x2 – 3x + 2 के गुणनखंड कीजिए]