Advertisements
Advertisements
Question
योग्य रीतीने पिसलेल्या 52 पत्त्यांच्या कॅटमधून एक पत्ता काढला, तर खालील घटनांची संभाव्यता काढण्यासाठी कृती पूर्ण करा.
घटना A : काढलेला पत्ता एक्का मिळणे.
घटना B : काढलेला पत्ता इस्पिकचा मिळणे.
कृती:
समजा, नमुना अवकाश 'S' आहे.
∴ n(S) = 52
घटना A : काढलेला पत्ता एक्का मिळणे.
∴ n(A) = `square`
∴ P(A) = `square` ...........(सूत्र)
∴ P(A) = `square/52`
∴ P(A) = `square/13`
घटना B : काढलेला पत्ता इस्पिकचा मिळणे.
∴ n(B) = `square`
P(B) = `("n"("B"))/("n"("S"))`
∴ P(B) = `square/4`
Solution
समजा, नमुना अवकाश 'S' आहे.
∴ n(S) = 52
घटना A : काढलेला पत्ता एक्का मिळणे.
∴ n(A) = 4
∴ P(A) = `bb(("n"("A"))/("n"("S")))` ...........(सूत्र)
∴ P(A) = `bb4/52`
∴ P(A) = `bb1/13`
घटना B : काढलेला पत्ता इस्पिकचा मिळणे.
∴ n(B) = 13
P(B) = `("n"("B"))/("n"("S"))`
∴ P(B) = `bb(13/52) = bb1/4`
APPEARS IN
RELATED QUESTIONS
एक फासा टाकला असता पुढील घटनेची संभाव्यता काढण्यासाठी खालील कृती पूर्ण करा.
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
कृती: समजा, ‘S’ नमुना अवकाश आहे.
S = {1, 2, 3, 4, 5, 6} ∴ n(S) = 6
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
A = {______} ∴ n(A) = 3
P(A) = `square/("n"("S"))` ...........[सूत्र]
= `square/6`
∴ P(A) = `1/square`
दोन फासे एकाच वेळी टाकले असता खालील घटनाची संभाव्यता काढा.
पहिल्या फाशावरील अंक दुसऱ्या फाशावरील अंकापेक्षा मोठा असणे.
योग्य रीतीने पिसलेल्या 52 पत्त्यांच्या कॅटमधून एक पत्ता काढला, तर खालील घटनाची संभाव्यता काढा.
एक्का मिळणे.
जोसेफने एका टोपीत प्रत्येक कार्डावर इंग्रजी वर्णमालेतील एक अक्षर याप्रमाणे सर्व अक्षरांची 26 कार्डे ठेवली आहेत. त्यांतून अक्षराचे एक कार्ड यादृच्छिक पद्धतीने काढायचे आहे, तर काढलेले अक्षर स्वर असण्याची संभाव्यता काढा.
एका फाशाची सहा पृष्ठे खालीलप्रमाणे आहेत.
हा फासा एकदाच टाकला, तर पुढील घटनाची संभाव्यता काढा.
वरच्या पृष्ठभागावर ‘D’ मिळणे.
एका खोक्यात 30 तिकिटे आहेत. प्रत्येक तिकिटावर 1 ते 30 पैकी एकच संख्या लिहिली आहे. त्यांतून कोणतेही एक तिकीट यादृच्छिक पद्धतीने काढले, तर खालील घटनाची संभाव्यता काढा.
तिकिटावरील संख्या विषम असणे.
खालील कृती करा.
तुमच्या वर्गाचा एकूण पट n(S) = `square`
वर्गातील चश्मा वापरणार्या विद्यार्थ्यांची संख्या n(A) = `square`
सर्व विद्यार्थ्यांमधून चश्मा वापरणारा एक विद्यार्थी यादृच्छिक पद्धतीने निवडण्याची संभाव्यता P(A) = `square`
सर्व विद्यार्थ्यांमधून चश्मा न वापरणारा एक विद्यार्थी यादृच्छिक पद्धतीने निवडण्याची संभाव्यता P(B) = `square`
0, 1, 2, 3, 4 यांपैकी अंक घेऊन दोन अंकी संख्या तयार करायची आहे. अंकांची पुनरावृत्ती केलेली चालेल, तर खालील घटनाची संभाव्यता काढा.
ती संख्या 11 च्या पटीत असणे.
एका पिशवीत 8 लाल व काही निळे चेंडू आहेत. पिशवीतून एक चेंडू यादृच्छिक पद्धतीने काढला असता लाल व निळा चेंडू मिळण्याची संभाव्यता यांचे गुणोत्तर 2 : 5, आहे, तर पिशवीतील निळ्या चेंडूंची संख्या काढा.
एक नाणे व एक फासा एकाच वेळी फेकले असता खालील घटनाची संभाव्यता काढा:
घटना A : छाप व मूळ संख्या मिळणे अशी आहे.