Advertisements
Advertisements
Question
You are given four pulleys and three strings. Draw a neat and labelled diagram to use them so as to obtain a maximum mechanical advantage equal to 8. In you diagram make the directions of load, effort and tension in each strand. What assumptions have you made to obtain the required mechanical advantage?
Solution
Assumptions:
(i) There is no friction in the pulley bearing.
(ii) The pulleys and the string are massless.
APPEARS IN
RELATED QUESTIONS
A boy has to lift a load of mass 50 kg to a height of 1 m. (a) what effort is required if he lifts it directly? Take g = 10 N kg-1 (b) If the boy can exert a maximum effort of 250 N, so he uses an inclined plane to lift the load up. What should be the minimum length of the plank used by him?
A gear system has the driving wheel of radius 2 cm and driven wheel of radius 20 cm.
(a) Find the gear ratio.
(b) If the number of rotations made per minute by the driving wheel is 100, find the number of rotations per minute made by the driven wheel.
(c) If the driven wheel has 40 teeth, find the number of teeth in the driving wheel.
In following figure, shows a block and tackle system of pulleys used to lift a load.
- How many strands of tackle are supporting the load?
- Draw arrows to represent tension T in each strand.
- What is the mechanical advantage of the system?
- When load is pulled up by a distance 1 m, how far does the effort end move?
- How much effort is needed to lift a load of 100 N?
- What will be it's V.R. if the weight of the movable block is doubled?
In the fig draw a tackle to lit a load by applying the torce in a convinient direction. Mark the position of load and effort.
(i) If the load is raised by 1 m, Through what distance will the effort move?
(ii) State how many strands of tackle are supporting the load?
(iii) What is the mechanical advantage of the sysytem?
Complete the following sentences:
1 J = ........ Erg.
A fixed pulley is driven by a 100 kg mass falling at a rate of 8.0 m in 4.0 s. It lifts a load of 75.0 kgf. Calculate the efficiency of the pulley.
A block and tackle system has the velocity ratio 3. Draw a labelled diagram of the system indicating the points of application and the directions of load L and effort E. A man can exert a pull of 200 kgf. If the effort end moves a distance 60 cm, what distance does the load move?
A woman draws water from a well using a fixed pulley. The mass of the bucket and water together is 60 kg. The force applied by the woman is 70 N. Calculate the mechanical advantage. [Take g = 10 m/s2].
A pulley system has a velocity ratio 3. Draw a diagram showing the point of application and direction of load (L), effort (E) and tension (T). It lifts a load of 150 N by an effort of 60 N. Calculate its mechanical advantage. Is the pulley system ideal? Give reason.