Advertisements
Advertisements
प्रश्न
`int_0^(2/3) dx/(4+9x^2)` equals:
विकल्प
`pi/6`
`pi/12`
`pi/24`
`pi/4`
उत्तर
`pi/4`
Explanation:
Let `I = int_0^(2/3) dx/(4 + 9x^2)`
`= 1/9 int_0^(2/3) dx/(4/9 + x^2)`
`= 1/9 * 1/2 [tan^-1 (x/(2/3))]_0^(2/3)`
`= 1/6 [tan^-1 (3x)/2]_0^(2/3)`
`= 1/6 [tan^-1 1 - tan^-1 0]`
`= 1/6 [pi/4 - 0]`
`= pi/24`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)(2^(sinx))/(2^(sinx)+2^(cosx))dx`
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_0^(pi/4) tan x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_0^1 dx/sqrt(1-x^2)`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_2^3 dx/(x^2 - 1)`
Evaluate the definite integral:
`int_0^(pi/2) cos^2 xdx`
Evaluate the definite integral:
`int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_1^(sqrt3)dx/(1+x^2) ` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_1^sqrt(3) (dx)/(1 + x^2)` equals
`int_6^(2/3) (dx)/(4 + 9x^2)` equals
Evaluate:
`int_0^π(sin^4x + cos^4x)dx`
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`