Advertisements
Advertisements
प्रश्न
1500 families with 2 children were selected randomly and the following data were recorded:
Number of girls in a family | 0 | 1 | 2 |
Number of families | 211 | 814 | 475 |
(i) No girl
(ii) 1 girl
(iii) 2 girls
(iv) at most one girl
(v) more girls than boys
उत्तर
The total number of trials is 1500.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by p(A) and is given by
P(A) = `m/n`
(i) Let A be the event of having no girl.
The number of times A happens is 211.
Therefore, we have
P(A) = `211/1500`
=0.1406
(ii) Let B be the event of having one girl.
The number of times B happens is 814.
Therefore, we have
P(B) = `814/1500`
=0.5426
(iii) Let C be the event of having two girls.
The number of times C happens is 475.
Therefore, we have
P(C) = `475/1500`
=0.3166
(iv) Let D be the event of having at most one girl.
The number of times D happens is 211+814=1025.
Therefore, we have
P(D) = `1025/1500`
=0.6833
(v) Let E be the event of having more girls than boys.
The number of times E happens is 475.
Therefore, we have
P(E) = `475/1500`
=0.3166
APPEARS IN
संबंधित प्रश्न
The distance (in km) of 40 engineers from their residence to their place of work were found as follows.
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
What is the empirical probability that an engineer lives:-
(i) less than 7 km from her place of work?What is the empirical probability that an engineer lives:
(ii) more than or equal to 7 km from her place of work?
(iii) within 1/2 km from her place of work?
Concentration of SO2 (in ppm) | Number of days (Frequency) |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
Total | 30 |
The above frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 − 0.16 on any of these days.
The percentage of marks obtained by a student in monthly unit tests are given below:
Unit test: | I | II | III | IV | V |
Percentage of marks obtained: | 69 | 71 | 73 | 68 | 76 |
Find the probability that the student gets:
(i) more than 70% marks
(ii) less than 70% marks
(iii) a distinction
To know the opinion of the students about Mathematics, a survey of 200 students was conducted. The data is recorded in the following table:
Opinion: | Like | Dislike |
Number of students: | 135 | 65 |
Find the probability that a student chosen at random (i) likes Mathematics (ii) does not like it.
Eleven bags of wheat flour, each marked 5 Kg, actually contained the following weights of flour (in kg):
4.97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Following table shows the birth month of 40 students of class IX.
Jan | Feb | March | April | May | June | July | Aug | Sept | Oct | Nov | Dec |
3 | 4 | 2 | 2 | 5 | 1 | 2 | 5 | 3 | 4 | 4 | 4 |
Given below is the frequency distribution of wages (in Rs) of 30 workers in a certain factory:
Wages (in Rs) | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 | 210-230 | 230-250 |
No. of workers | 3 | 4 | 5 | 6 | 5 | 4 | 3 |
A worker is selected at random. Find the probability that his wages are:
(i) less than Rs 150
(ii) at least Rs 210
(iii) more than or equal to 150 but less than Rs 210.
what is the probability of getting at least two heads?
A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:
Monthly income (in Rs) |
Number of Television/household | |||
0 | 1 | 2 | Above 2 | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 and above | 0 | 1100 | 760 | 220 |
Find the probability:
- of a household earning Rs 10000 – Rs 14999 per year and having exactly one television.
- of a household earning Rs 25000 and more per year and owning 2 televisions.
- of a household not having any television.
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is under 60 but over 39 years