हिंदी

A Bucket Open at the Top is in the Form of a Frustum of a Cone with a Capacity of 12308.8 Cm3 . the Radii of the Top and Bottom of the Circular Ends - Mathematics

Advertisements
Advertisements

प्रश्न

A bucket open at the top is in the form of a frustum of a cone with a capacity of 12308.8 cm. the radii of the top and bottom of the circular ends of the bucket are 20 cm and 12 cm respectively. Find the height of the bucket and also the area of the metal sheet used in making it. 

योग

उत्तर

Let the height of the bucket ne h cm and Slant height be I cm.

Here,
r1 = 20 cm
r2 = 12 cm

And capacity of bucket = 12308.8 cm3

We know that capacity of bucket = `(pi"h")/3 (r_2^2 + r_2^2 + r_1r_2)`

`= 3.14 xx "h"/3 (400 + 144 + 240)`

`= 3.14xx"h"/3 xx 784`

So we have = `3.14xx"h"/3xx784` = 12308.8

`"h" = (12308.8xx3)/(3.14xx784)`

= 15 cm

Now, the slant height of the frustum,

l = `sqrt("h"^2 + ("r"_1 - "r"_2)^2` 

`= sqrt(15^2 + 8^2)`

`=sqrt289`

= 17 cm

Area of metal sheet used in making it

`= pir_2^2 + pi(r_1 + r_2)^2`

`= 3.174 xx [144 + (20 + 12) xx 17]`

= 2160.32 cm2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 30/1/1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×