हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

A company produces two types of products say type A and B. Profits on the two types of product are ₹ 30/- and ₹ 40/- per kg respectively. The data on resources required and availability of - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A company produces two types of products say type A and B. Profits on the two types of product are ₹ 30/- and ₹ 40/- per kg respectively. The data on resources required and availability of resources are given below.

  Requirements Capacity available per month
Product A Product B
Raw material (kgs) 60 120 12000
Machining hours/piece 8 5 600
Assembling (man hours) 3 4 500

Formulate this problem as a linear programming problem to maximize the profit.

योग

उत्तर

(i) Variables: Let x1 and x2 denote the two types products A and B respectively.

(ii) Objective function:

Profit on x1 units of type A product = 30x1

Profit on x2 units of type B product = 40x2

Total profit = 30x1 + 40x2

Let Z = 30x1 + 40x2, which is the objective function.

Since the profit is to be maximized, we have to maximize Z = 30x1 + 40x2

(iii) Constraints:

60x1 + 120x2 ≤ 12,000

8x1 + 5x2 ≤ 600

3x1 + 4x2 ≤ 500

(iv) Non-negative constraints: Since the number of products on type A and type B are non-negative, we have x1, x2 ≥ 0

Thus, the mathematical formulation of the LPP is Maximize Z = 30x1 + 40x2

Subject to the constraints,

60x1 + 120x2 ≤ 12,000

8x1 + 5x2 ≤ 600

3x1 + 4x2 ≤ 500

x1, x2 ≥ 0

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Operations Research - Exercise 10.1 [पृष्ठ २४३]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 10 Operations Research
Exercise 10.1 | Q 2 | पृष्ठ २४३

संबंधित प्रश्न

A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 in magazines A and B per copy. These are processed on three Machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II, and 2 hours on machine III. Magazine B requires 3 hours on machine I, 2 hours on machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, and 60 hours per week respectively. Formulate the LPP to determine weekly production of magazines A and B, so that the total profit is maximum.


Objective function of LPP is ______.


The corner points of the feasible solution given by the inequation x + y ≤ 4, 2x + y ≤ 7, x ≥ 0, y ≥ 0 are ______.


Sketch the graph of the following inequation in XOY co-ordinate system:

|x + 5| ≤ y


A train carries at least twice as many first class passengers (y) as second class passengers (x) The constraint is given by_______


Which value of x is in the solution set of inequality − 2X + Y ≥ 17


Choose the correct alternative:

The feasible region is


Solve the following linear programming problems by graphical method.

Minimize Z = 3x1 + 2x2 subject to the constraints 5x1 + x2 ≥ 10; x1 + x2 ≥ 6; x1 + 4x2 ≥ 12 and x1, x2 ≥ 0.


Solve the following linear programming problem graphically.

Maximise Z = 4x1 + x2 subject to the constraints x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1 ≥ 0, x2 ≥ 0.


The LPP to maximize Z = x + y, subject to x + y ≤ 1, 2x + 2y ≥ 6, x ≥ 0, y ≥ 0 has ________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×