हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

Solve the following linear programming problems by graphical method. Minimize Z = 3x1 + 2x2 subject to the constraints 5x1 + x2 ≥ 10; x1 + x2 ≥ 6; x1 + 4x2 ≥ 12 and x1, x2 ≥ 0. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following linear programming problems by graphical method.

Minimize Z = 3x1 + 2x2 subject to the constraints 5x1 + x2 ≥ 10; x1 + x2 ≥ 6; x1 + 4x2 ≥ 12 and x1, x2 ≥ 0.

आलेख

उत्तर

Given that 5x1 + x2 ≥ 10

Let 5x1 + x2 = 10

x1 0 2
x2 10 0

Also given that x1 + x2 ≥ 6

Let x1 + x2 = 6

x1 0 6
x2 6 0

Also given that x1 + 4x2 ≥ 12

Let x1 + 4x2 = 12

x1 0 12
x2 3 0

To get B

5x1 + x2 = 10 ……..(1)

x1 + x2 = 6 ………(2)

4x1 = 4 ......[Equation (1) – (2)]

x1 = 1

x = 1 substitute in (2)

x1 + x2 = 6

1 + x2 = 6

x2 = 5

∴ B is (1, 5)

To get C

x1 + x2 = 6

x1 + 4x2 = 12
− 3x2 = − 6 ..........[Equation (1) – (2)]

x2 = 2

x2 = 2 substitute in (2) we get,

x1 + x2 = 6

x1 = 4

∴ C is (4, 2)

The feasible region satisfying all the conditions is ABCD.

The coordinates of the comer points are A(0, 10), B(1, 5), C(4, 2) and D(12, 0).

Corner points Z = 3x1 + 2x2
A(0, 10) 20
B(1, 5) 13
C(4, 2) 16
D(12, 0) 36

The minimum value of Z occours at B(1, 5).

∴ The optimal solution is x1 = 1, x2 = 5 and Zmin = 13

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Operations Research - Exercise 10.1 [पृष्ठ २४४]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 10 Operations Research
Exercise 10.1 | Q 4. (iii) | पृष्ठ २४४

संबंधित प्रश्न

A doctor has prescribed two different units of foods A and B to form a weekly diet for a sick person. The minimum requirements of fats, carbohydrates and proteins are 18, 28, 14 units respectively. One unit of food A has 4 units of fat, 14 units of carbohydrates and 8 units of protein. One unit of food B has 6 units of fat, 12 units of carbohydrates and 8 units of protein. The price of food A is ₹ 4.5 per unit and that of food B is ₹ 3.5 per unit. Form the LPP, so that the sick person’s diet meets the requirements at a minimum cost.


The half-plane represented by 3x + 2y < 8 contains the point ______.


Solve the following LPP:

Maximize z = 4x + 2y subject to 3x + y ≤ 27, x + y ≤ 21, x ≥ 0, y ≥ 0.


A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:

Product → Chair (x) Table (y) Available time (hours)
Machine ↓
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate the above problem as LPP. Solve it graphically


Objective function of LPP is ______.


Solve the following linear programming problems by graphical method.

Maximize Z = 6x1 + 8x2 subject to constraints 30x1 + 20x2 ≤ 300; 5x1 + 10x2 ≤ 110; and x1, x2 ≥ 0.


A solution which maximizes or minimizes the given LPP is called


Solve the following linear programming problem graphically.

Maximise Z = 4x1 + x2 subject to the constraints x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1 ≥ 0, x2 ≥ 0.


For the following shaded region, the linear constraint are:


Food F1 contains 2, 6, 1 units and food F2 contains 1, 1, 3 units of proteins, carbohydrates, fats respectively per kg. 8, 12 and 9 units of proteins, carbohydrates and fats is the weekly minimum requirement for a person. The cost of food F1 is Rs. 85 and food F2 is Rs. 40 per kg. Formulate the L.P.P. to minimize the cost.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×