हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

Solve the following linear programming problems by graphical method. Maximize Z = 40x1 + 50x2 subject to constraints 3x1 + x2 ≤ 9; x1 + 2x2 ≤ 8 and x1, x2 ≥ 0. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following linear programming problems by graphical method.

Maximize Z = 40x1 + 50x2 subject to constraints 3x1 + x2 ≤ 9; x1 + 2x2 ≤ 8 and x1, x2 ≥ 0.

आलेख

उत्तर

Given that 3x1 + x2 ≤ 9

Let 3x1 + x2 = 9

x1 0 3
x2 9 0

Also given that x1 + 2x2 ≤ 8]

Let x1 + 2x2 = 8

x1 0 8
x2 4 0

3x1 + x2 = 9 ………(1)

x1 + 2x2 = 8 ……..(2)

6x1 + 2x2 = 18 ……..(3) [Multiply by 2 for eq. (1)]

− 5x1 = − 10

x1 = 2

x1 = 2 substitute in (1)

3(2) + x2 = 9

x2 = 3

The feasible region satisfying all the conditions is OABC.

The co-ordinates of the corner points are O(0, 0), A(3, 0), B(2, 3), C(0, 4)

Corner points Z = 40x1 + 50x2
O(0, 0) 0
A(3, 0) 120
B(2, 3) 40 × 2 + 50 × 3 = 80 + 150 = 230
C(0, 4) 200

The maximum value of Z occurs at B(2, 3).

∴ The optimal solution is x1 = 2, x2 = 3 and Zmax = 230

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Operations Research - Exercise 10.1 [पृष्ठ २४४]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 10 Operations Research
Exercise 10.1 | Q 4. (iv) | पृष्ठ २४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×