हिंदी

Solve the following LPP by graphical method: Maximize z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following LPP by graphical method:

Maximize z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.

आलेख
योग

उत्तर

First we draw the lines AB and CD whose equations are 3x + 5y = 26 and 5x + 3y = 30 respectively.

Line Equation Points on the X-axis Points on the Y-axis Sign Region
AB 3x + 5y = 26 A`(26/3, 0)` B `(0, 26/5)` origin side of line AB
CD 5x + 3y = 30 C(6, 0) D(0, 10) origin side of line CD

The feasible region is OCPBO which is shaded in the graph.

The vertices of the feasible region are O (0, 0), C (6, 0), P and B `(0, 26/5)`.

The vertex P is the point of intersection of the lines 3x + 5y = 26         .....(1)

and 5x + 3y = 30          .....(2)

Multiplying equation (1) by 3 and equation (2) by 5, we get

9x + 15y = 78

and 25x + 15y = 150

On subtracting, we get

16x = 72

∴ x = `72/16 = 9/2 = 4.5`

Substituting x = 4.5 in equation (2), we get

5(4.5) + 3y = 30

22.5 + 3y = 30

∴ 3y = 7.5

∴ y = 2.5

∴ P is (4.5, 2.5)

The values of the objective function z = 7x + 11y at these corner points are

z(O) = 7(0) + 11(0) = 0 + 0 = 0

z(C) = 7(6) + 11(0) = 42 + 0 = 42

z(P) = 7(4.5) + 11(2.5) = 31.5 + 27.5 = 59.0 = 59

z(B) = 7(0) + 11`(26/5) = 286/5 = 57.2`

∴ z has maximum value 59, when x = 4.5 and y = 2.5.

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Linear Programming - Exercise 7.4 [पृष्ठ २४१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Linear Programming
Exercise 7.4 | Q 3 | पृष्ठ २४१

संबंधित प्रश्न

A company produces two types of articles A and B which requires silver and gold. Each unit of A requires 3 gm of silver and 1 gm of gold, while each unit of B requires 2 gm of silver and 2 gm of gold. The company has 6 gm of silver and 4 gm of gold. Construct the inequations and find feasible solution graphically.


In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14. 22 and 1 units of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients: 

Fodder → Fodder 1 Fodder 2
Nutrient ↓
Nutrients A 2 1
Nutrients B 2 3
Nutrients C 1 1

The cost of fodder 1 is ₹ 3 per unit and that of fodder 2 ₹ 2. Formulate the LPP to minimize the cost.


A company manufactures two types of chemicals Aand B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B and the total availability of P and Q.

Chemical→ A B Availability
Raw Material ↓
P 3 2 120
Q 2 5 160

The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. (Assume that the entire production of A and B can be sold). How many units of the chemicals A and B should be manufactured so that the company gets a maximum profit? Formulate the problem as LPP to maximize profit.


A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 in magazines A and B per copy. These are processed on three Machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II, and 2 hours on machine III. Magazine B requires 3 hours on machine I, 2 hours on machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, and 60 hours per week respectively. Formulate the LPP to determine weekly production of magazines A and B, so that the total profit is maximum.


Solve the following LPP by graphical method:

Minimize z = 8x + 10y, subject to 2x + y ≥ 7, 2x + 3y ≥ 15, y ≥ 2, x ≥ 0, y ≥ 0.


The maximum value of z = 5x + 3y subject to the constraints 3x + 5y ≤ 15, 5x + 2y ≤ 10, x, y ≥ 0 is ______.


The maximum value of z = 10x + 6y subject to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x, ≥ 0, y ≥ 0 is ______.


The point of which the maximum value of x + y subject to the constraints x + 2y ≤  70, 2x + y ≤ 95, x, ≥ 0, y ≥ 0 is is obtained at ______.


Solution of LPP to minimize z = 2x + 3y, such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is ______.


Solve the following LPP:

Maximize z = 6x + 10y subject to 3x + 5y ≤ 10, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.


Solve each of the following inequations graphically using XY-plane:

- 11x - 55 ≤ 0


Sketch the graph of the following inequation in XOY co-ordinate system:

|x + 5| ≤ y


Solve the following LPP:

Minimize z = 4x + 2y

Subject to 3x + y ≥ 27, x + y ≥ 21, x + 2y ≥ 30, x ≥ 0, y ≥ 0


A firm manufactures two products A and B on which profit earned per unit ₹ 3 and ₹ 4 respectively. Each product is processed on two machines M1 and M2. The product A requires one minute of processing time on M1 and two minutes of processing time on M2, B requires one minute of processing time on M1 and one minute of processing time on M2. Machine M1 is available for use for 450 minutes while M2 is available for 600 minutes during any working day. Find the number of units of product A and B to be manufactured to get the maximum profit.


A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 on magazines A and B per copy. These are processed on three machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II and 2 hours on Machine III. Magazine B requires 3 hours on Machine I, 2 hours on Machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, 60 hours per week respectively. Formulate the Linear programming problem to maximize the profit.


Choose the correct alternative :

Which of the following is correct?


Choose the correct alternative :

Solution of LPP to minimize z = 2x + 3y st. x ≥ 0, y ≥ 0, 1≤ x + 2y ≤ 10 is


Choose the correct alternative :

The corner points of the feasible region are (0, 0), (2, 0), `(12/7, 3/7)` and (0,1) then the point of maximum z = 7x + y


A train carries at least twice as many first class passengers (y) as second class passengers (x) The constraint is given by_______


The point of which the maximum value of z = x + y subject to constraints x + 2y ≤ 70, 2x + y ≤ 90, x ≥ 0, y ≥ 0 is obtained at


Which value of x is in the solution set of inequality − 2X + Y ≥ 17


Maximize z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0


Maximize z = 10x + 25y subject to x + y ≤ 5, 0 ≤ x ≤ 3, 0 ≤ y ≤ 3


Solve the Linear Programming problem graphically:

Maximize z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find the maximum value of z.


Minimize z = 6x + 21y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0 show that the minimum value of z occurs at more than two points


Choose the correct alternative:

The feasible region is


Choose the correct alternative:

Z = 9x + 13y subjected to constraints 2x + 3y ≤ 18, 2x + y ≤ 10, 0 ≤ x, y was found to be maximum at the point


The variables involved in LPP are called ______


A company produces two types of products say type A and B. Profits on the two types of product are ₹ 30/- and ₹ 40/- per kg respectively. The data on resources required and availability of resources are given below.

  Requirements Capacity available per month
Product A Product B
Raw material (kgs) 60 120 12000
Machining hours/piece 8 5 600
Assembling (man hours) 3 4 500

Formulate this problem as a linear programming problem to maximize the profit.


Solve the following linear programming problems by graphical method.

Minimize Z = 3x1 + 2x2 subject to the constraints 5x1 + x2 ≥ 10; x1 + x2 ≥ 6; x1 + 4x2 ≥ 12 and x1, x2 ≥ 0.


The maximum value of the objective function Z = 3x + 5y subject to the constraints x ≥ 0, y ≥ 0 and 2x + 5y ≤ 10 is


The minimum value of the objective function Z = x + 3y subject to the constraints 2x + y ≤ 20, x + 2y ≤ 20, x > 0 and y > 0 is


The values of θ satisfying sin7θ = sin4θ - sinθ and 0 < θ < `pi/2` are ______


Which of the following can be considered as the objective function of a linear programming problem?


The minimum value of z = 5x + 13y subject to constraints 2x + 3y ≤ 18, x + y ≥ 10, x ≥ 0, y ≥ 2 is ______ 


The point which provides the solution of the linear programming problem, Max.(45x + 55y) subject to constraints x, y ≥ 0, 6x + 4y ≤ 120, 3x + 10y ≤ 180, is ______ 


Solution which satisfy all constraints is called ______ solution.


Solve the following LPP by graphical method:

Maximize: z = 3x + 5y Subject to:  x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0


Find graphical solution for the following system of linear in equation:

x + 2y ≥ 4, 2x - y ≤ 6


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×