Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
Solution of LPP to minimize z = 2x + 3y st. x ≥ 0, y ≥ 0, 1≤ x + 2y ≤ 10 is
विकल्प
x = 0, y = `(1)/(2)`
x = `(1)/(2)`, y = 0
x = 1, y = – 2
x = y = `(1)/(2)`
उत्तर
Z = 2x + 3y
The given inequalities are 1 ≤ x + 2y ≤ 10
i.e. x + 2y ≥ 1 and x + 2y ≤ 10
consider lines L1 and L2 where L1 : x + 2y = 1, L2 : x + 2y = 10.
For line L1 plot A`(0, 1/2)`, B(1, 0)
For line L2 plot P (0, 5), Q (10, 0).
The coordinates of origin O (0, 0) do not satisfy x + 2y ≥ 1.
Required region lies on non – origin side of L1.
The coordinates of origin O(0, 0) satisfies the inequalities x + 2y ≤ 10.
Required region lies on the origin side of L2.
Lines L1 and L2 are parallel.
ABQPA is the required feasible region
At `"A"(0, 1/2), "Z" = 0+ 3(1/2)` = 1.5
At B (1, 0), Z = 2 (1) + 0 = 2
At P (0, 5), Z = 0 + 3(5) = 15
At Q (10, 0), Z = 2 (10) + 0 = 20
The maximum value of Z is 1.5 and it occurs at `"A"(0, 1/2)` i.e. x = 0, y = `(1)/(2)`
APPEARS IN
संबंधित प्रश्न
Solve each of the following inequations graphically using XY-plane:
- 11x - 55 ≤ 0
Solve the following LPP:
Minimize z = 4x + 2y
Subject to 3x + y ≥ 27, x + y ≥ 21, x + 2y ≥ 30, x ≥ 0, y ≥ 0
In a cattle breeding firm, it is prescribed that the food ration for one animal must contain 14, 22, and 1 unit of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit weight of these two contains the following amounts of these three nutrients:
Nutrient\Fodder | Fodder 1 | Fodder2 |
Nutrient A | 2 | 1 |
Nutrient B | 2 | 3 |
Nutrient C | 1 | 1 |
The cost of fodder 1 is ₹ 3 per unit and that of fodder ₹ 2 per unit. Formulate the L.P.P. to minimize the cost.
A company manufactures two types of chemicals A and B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B.
Raw Material \Chemical | A | B | Availability |
p | 3 | 2 | 120 |
Q | 2 | 5 | 160 |
The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. Formulate the problem as L.P.P. to maximize the profit.
Choose the correct alternative :
The half plane represented by 3x + 2y ≤ 0 constraints the point.
Maximize z = 5x + 2y subject to 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0
Minimize z = 6x + 21y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0 show that the minimum value of z occurs at more than two points
Maximize z = −x + 2y subjected to constraints x + y ≥ 5, x ≥ 3, x + 2y ≥ 6, y ≥ 0 is this LPP solvable? Justify your answer.
Choose the correct alternative:
Z = 9x + 13y subjected to constraints 2x + 3y ≤ 18, 2x + y ≤ 10, 0 ≤ x, y was found to be maximum at the point
The variables involved in LPP are called ______
A firm manufactures pills in two sizes A and B. Size A contains 2 mgs of aspirin, 5 mgs of bicarbonate and 1 mg of codeine. Size B contains 1 mg. of aspirin, 8 mgs. of bicarbonate and 6 mgs. of codeine. It is found by users that it requires at least 12 mgs. of aspirin, 74 mgs. of bicarbonate and 24 mgs. of codeine for providing immediate relief. It is required to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a standard LLP.
Solve the following linear programming problem graphically.
Minimize Z = 200x1 + 500x2 subject to the constraints: x1 + 2x2 ≥ 10; 3x1 + 4x2 ≤ 24 and x1 ≥ 0, x2 ≥ 0.
Solve the following linear programming problem graphically.
Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0.
The values of θ satisfying sin7θ = sin4θ - sinθ and 0 < θ < `pi/2` are ______
Solve the following LP.P.
Maximize z = 13x + 9y,
Subject to 3x + 2y ≤ 12,
x + y ≥ 4,
x ≥ 0,
y ≥ 0.
Solution which satisfy all constraints is called ______ solution.
Two kinds of foods A and B are being considered to form a weekly diet. The minimum weekly requirements of fats, Carbohydrates and proteins are 12, 16 and 15 units respectively. One kg of food A has 2, 8 and 5 units respectively of these ingredients and one kg of food B has 6, 2 and 3 units respectively. The price of food A is Rs. 4 per kg and that of food B is Rs. 3 per kg. Formulate the L.P.P. and find the minimum cost.