हिंदी

Solve the following LP.P. Maximize z = 13x + 9y, Subject to 3x + 2y ≤ 12, x + y ≥ 4, x ≥ 0, y ≥ 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following LP.P.

Maximize z = 13x + 9y,

Subject to 3x + 2y ≤ 12,

x + y ≥ 4,

x ≥ 0,

y ≥ 0.

सारिणी
आलेख

उत्तर

Equation x y Points Side
3x + 2y = 12 0 6 A(0, 6) Origin
  4 0 B(4, 0) Side
x + y = 4 0 4 C(0, 4) Non-origin
  4 0 D(4, 0) Side


Shaded region is the feasible region ABCA.

Z = 13x + 9y

Z(A) = 0 + 9 × 6 = 54

Z(B) = 13 × 4 + 0 = 52

Z(C) = 0 + 4 × 9 = 36

∴ Max, value of z is 54 at A(0, 6)

i.e., when x = 0,

y = 6.

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

If John drives a car at a speed of 60 km/hour, he has to spend ₹ 5 per km on petrol. If he drives at a faster speed of 90 km/hour, the cost of petrol increases ₹ 8 per km. He has ₹ 600 to spend on petrol and wishes to travel the maximum distance within an hour. Formulate the above problem as L.P.P.


Solve the following LPP by graphical method:

Maximize z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Which of the following is correct?


Solution of LPP to minimize z = 2x + 3y, such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is ______.


Solve the following LPP:

Maximize z = 4x + 2y subject to 3x + y ≤ 27, x + y ≤ 21, x ≥ 0, y ≥ 0.


Solve the following LPP:

Maximize z = 2x + 3y subject to x - y ≥ 3, x ≥ 0, y ≥ 0.


Sketch the graph of the following inequation in XOY co-ordinate system:

|x + 5| ≤ y


A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:

Product → Chair (x) Table (y) Available time (hours)
Machine ↓
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate the above problem as LPP. Solve it graphically


In a cattle breeding firm, it is prescribed that the food ration for one animal must contain 14, 22, and 1 unit of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit weight of these two contains the following amounts of these three nutrients:

Nutrient\Fodder Fodder 1 Fodder2
Nutrient A 2 1
Nutrient B 2 3
Nutrient C 1 1

The cost of fodder 1 is ₹ 3 per unit and that of fodder ₹ 2 per unit. Formulate the L.P.P. to minimize the cost.


A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the table below:

Raw Material\Fertilizers F1 F2 Availability
A 2 3 40
B 1 4 70

By selling one unit of F1 and one unit of F2, company gets a profit of ₹ 500 and ₹ 750 respectively. Formulate the problem as L.P.P. to maximize the profit.


Choose the correct alternative :

Which of the following is correct?


Choose the correct alternative :

Of all the points of the feasible region the optimal value of z is obtained at a point


Choose the correct alternative :

The corner points of the feasible region given by the inequations x + y ≤ 4, 2x + y ≤ 7, x ≥ 0, y ≥ 0, are


Choose the correct alternative :

The half plane represented by 3x + 2y ≤ 0 constraints the point.


Fill in the blank :

A dish washing machine holds up to 40 pieces of large crockery (x) This constraint is given by_______.


State whether the following is True or False :

Saina wants to invest at most ₹ 24000 in bonds and fixed deposits. Mathematically this constraints is written as x + y ≤ 24000 where x is investment in bond and y is in fixed deposits.


Which value of x is in the solution set of inequality − 2X + Y ≥ 17


Maximize z = 5x + 2y subject to 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0


Minimize z = 2x + 4y is subjected to 2x + y ≥ 3, x + 2y ≥ 6, x ≥ 0, y ≥ 0 show that the minimum value of z occurs at more than two points


Maximize z = −x + 2y subjected to constraints x + y ≥ 5, x ≥ 3, x + 2y ≥ 6, y ≥ 0 is this LPP solvable? Justify your answer.


Choose the correct alternative:

The feasible region is


The constraint that in a particular XII class, number of boys (y) are less than number of girls (x) is given by ______


A company produces two types of products say type A and B. Profits on the two types of product are ₹ 30/- and ₹ 40/- per kg respectively. The data on resources required and availability of resources are given below.

  Requirements Capacity available per month
Product A Product B
Raw material (kgs) 60 120 12000
Machining hours/piece 8 5 600
Assembling (man hours) 3 4 500

Formulate this problem as a linear programming problem to maximize the profit.


Solve the following linear programming problems by graphical method.

Maximize Z = 22x1 + 18x2 subject to constraints 960x1 + 640x2 ≤ 15360; x1 + x2 ≤ 20 and x1, x2 ≥ 0.


In the given graph the coordinates of M1 are


Solve the following linear programming problem graphically.

Minimize Z = 200x1 + 500x2 subject to the constraints: x1 + 2x2 ≥ 10; 3x1 + 4x2 ≤ 24 and x1 ≥ 0, x2 ≥ 0.


The values of θ satisfying sin7θ = sin4θ - sinθ and 0 < θ < `pi/2` are ______


Solve the following LPP:

Maximize z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Find graphical solution for the following system of linear in equation:

x + 2y ≥ 4, 2x - y ≤ 6


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×