हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

In the given graph the coordinates of M1 are - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the given graph the coordinates of M1 are

विकल्प

  • x1 = 5, x2 = 30

  • x1 = 20, x2 = 16

  • x1 = 10, x2 = 20

  • x1 = 20, x2 = 30

MCQ

उत्तर

x1 = 10, x2 = 20

Explanation:

4x1 + 2x2 = 80 (or) 2x1 + x2 = 40

2x1 + x2 = 40 ……(1)

2x1 + 5x2 = 120 ……(2)
− 4x2 = − 80 ........[Equation (1) – (2)]

x2 = 20

But, 2x1 + x2 = 40

2x1 + 20 = 20

x1 = 10

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Operations Research - Exercise 10.3 [पृष्ठ २५१]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 10 Operations Research
Exercise 10.3 | Q 7 | पृष्ठ २५१

संबंधित प्रश्न

Which of the following is correct?


If the corner points of the feasible solution are (0, 0), (3, 0), (2, 1), `(0, 7/3)` the maximum value of z = 4x + 5y is ______.


Sketch the graph of the following inequation in XOY co-ordinate system:

|x + 5| ≤ y


Find graphical solution for the following system of linear in equation:

3x + 4y ≤ 12, x - 2y ≥ 2, y ≥ - 1


A manufacturer produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs requires 1 hour of work on Machine M1 and 3 hours of work on M2. A package of tubes requires 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. If maximum availability of Machine M1 is 10 hours and that of Machine M2 is 12 hours, then formulate the L.P.P. to maximize the profit.


Fill in the blank :

A dish washing machine holds up to 40 pieces of large crockery (x) This constraint is given by_______.


Maximize z = 5x + 2y subject to 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0


x − y ≤ 1, x − y ≥ 0, x ≥ 0, y ≥ 0 are the constant for the objective function z = x + y. It is solvable for finding optimum value of z? Justify?


Maximize: z = 3x1 + 4x2 subject to 2x1 + x2 ≤ 40, 2x1 + 5x2 ≤ 180, x1, x2 ≥ 0. In the LPP, which one of the following is feasible comer point?


Solve the following linear programming problem graphically.

Maximise Z = 4x1 + x2 subject to the constraints x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1 ≥ 0, x2 ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×