Advertisements
Advertisements
Question
In the given graph the coordinates of M1 are
Options
x1 = 5, x2 = 30
x1 = 20, x2 = 16
x1 = 10, x2 = 20
x1 = 20, x2 = 30
Solution
x1 = 10, x2 = 20
Explanation:
4x1 + 2x2 = 80 (or) 2x1 + x2 = 40
2x1 + x2 = 40 ……(1)
2x1 + 5x2 = 120 ……(2)
− 4x2 = − 80 ........[Equation (1) – (2)]
x2 = 20
But, 2x1 + x2 = 40
2x1 + 20 = 20
x1 = 10
APPEARS IN
RELATED QUESTIONS
A furniture dealer deals in tables and chairs. He has ₹ 1,50,000 to invest and a space to store at most 60 pieces. A table costs him ₹ 1500 and a chair ₹ 750. Construct the inequations and find the feasible solution.
A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 in magazines A and B per copy. These are processed on three Machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II, and 2 hours on machine III. Magazine B requires 3 hours on machine I, 2 hours on machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, and 60 hours per week respectively. Formulate the LPP to determine weekly production of magazines A and B, so that the total profit is maximum.
Solve the following LPP by graphical method:
Maximize z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.
Objective function of LPP is ______.
Solve each of the following inequations graphically using XY-plane:
4x - 18 ≥ 0
Solve each of the following inequations graphically using XY-plane:
y ≤ - 3.5
A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:
Product → | Chair (x) | Table (y) | Available time (hours) |
Machine ↓ | |||
Assembling | 3 | 3 | 36 |
Finishing | 5 | 2 | 50 |
Polishing | 2 | 6 | 60 |
Formulate the above problem as LPP. Solve it graphically
The feasible region is the set of point which satisfy.
A company produces two types of pens A and B. Pen A is of superior quality and pen B is of lower quality. Profits on pens A and B are ₹ 5 and ₹ 3 per pen respectively. Raw materials required for each pen A is twice as that of pen B. The supply of raw material is sufficient only for 1000 pens per day. Pen A requires a special clip and only 400 such clips are available per day. For pen B, only 700 clips are available per day. Formulate this problem as a linear programming problem.
Solve the following linear programming problem graphically.
Minimize Z = 200x1 + 500x2 subject to the constraints: x1 + 2x2 ≥ 10; 3x1 + 4x2 ≤ 24 and x1 ≥ 0, x2 ≥ 0.