Advertisements
Advertisements
Question
A company produces two types of pens A and B. Pen A is of superior quality and pen B is of lower quality. Profits on pens A and B are ₹ 5 and ₹ 3 per pen respectively. Raw materials required for each pen A is twice as that of pen B. The supply of raw material is sufficient only for 1000 pens per day. Pen A requires a special clip and only 400 such clips are available per day. For pen B, only 700 clips are available per day. Formulate this problem as a linear programming problem.
Solution
(i) Variables: Let x1 and x2 denote the number of pens in type A and type B.
(ii) Objective function:
Profit on x1 pens in type A = 5x1
Profit on x2 pens in type B is 3x2
Total profit = 5x1 + 3x2
Let Z = 5x1 + 3x2, which is the objective function.
Since the B total profit is to be maximized, we have to maximize Z = 5x1 + 3x2
(iii) Constraints:
Raw materials required for each pen A is twice as that of pen B.
i.e., for pen A raw material required is 2x1 and for B is x2.
Raw material is sufficient only for 1000 pens per day
∴ 2x1 + x2 ≤ 1000
Pen A requires 400 clips per day
∴ x1 ≤ 400
Pen B requires 700 clips per day
∴ x2 ≤ 700
(iv) Non-negative restriction:
Since the number of pens is non-negative, we have x1 > 0, x2 > 0.
Thus, the mathematical formulation of the LPP is Maximize Z = 5x1 + 3x2
Subject to the constrains
2x1 + x2 ≤ 1000, x1 ≤ 400, x2 ≤ 700, x1, x2 ≥ 0
APPEARS IN
RELATED QUESTIONS
Find the feasible solution of the following inequation:
x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.
Solve the following LPP by graphical method:
Maximize z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.
Minimize z = 6x + 2y, subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0.
Solve the following LPP:
Maximize z = 2x + 3y subject to x - y ≥ 3, x ≥ 0, y ≥ 0.
Solve each of the following inequations graphically using XY-plane:
5y - 12 ≥ 0
Solve the following LPP:
Maximize z = 4x1 + 3x2 subject to
3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0.
In a cattle breeding firm, it is prescribed that the food ration for one animal must contain 14, 22, and 1 unit of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit weight of these two contains the following amounts of these three nutrients:
Nutrient\Fodder | Fodder 1 | Fodder2 |
Nutrient A | 2 | 1 |
Nutrient B | 2 | 3 |
Nutrient C | 1 | 1 |
The cost of fodder 1 is ₹ 3 per unit and that of fodder ₹ 2 per unit. Formulate the L.P.P. to minimize the cost.
State whether the following is True or False :
The point (1, 2) is not a vertex of the feasible region bounded by 2x + 3y ≤ 6, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.
Constraints are always in the form of ______ or ______.
Sketch the graph of the following inequation in XOY co-ordinate system.
2y - 5x ≥ 0