English

Minimize z = 6x + 2y, subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Minimize z = 6x + 2y, subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y  ≥ 3, x ≥ 0, y ≥ 0.

Graph
Sum

Solution

First we draw the lines AB, CD and EF whose equations are x + 2y = 3, x + 4y = 4 and 3x + y = 3 respectively.

Line Equation Points on the X-axis Points on the Y-axis Sign Region
AB x + 2y = 3 A(3, 0) B`(0, 3/2)` non-origin side of line AB
CD x + 4y = 4 C(4, 0) D(0, 1) non-origin side of line CD
EF 3x + y = 3 E(1, 0) F(0, 3) non-origin side of line EF

The feasible region is XCPQFY which is shaded in the graph.

The vertices of the feasible region are C(4, 0), P, Q and F (0, 3).

P is the point of intersection of the lines x + 4y = 4 and x + 2y = 3

On subtracting, we get

2y = 1 

∴ y = `1/2`

Substituting y = `1/2` in x + 2y = 3, we get

x + 2`(1/2)` = 3

∴ x = 2

∴ P ≡ `(2, 1/2)`

Q is the point of intersection of the lines

x + 2y = 3     ....(1)

and 3x + y = 3      ...(2)

Multiplying equation (1) by 3, we get

3x + 6y = 9

Subtracting equation (2) from this equation, we get

5y = 6

∴ y =`6/5`

∴ from (1), x + 2`(6/5) = 3`

∴ x = `3 - 12/5 = 3/5` 

∴ Q ≡ `(3/5,6/5)`

The values of the objective function z = 6x + 21y at these vertices are

z(C) = 6(4) + 21(0) = 24

z(P) = 6(2) + 21`(1/2)`

= 12 + 10.5 = 22.5

z (Q) = `6(3/5) + 21(6/5)`

`= 18/5 + 126/5 = 144/5 = 28.8`

z(F) = 6(0) + 21(3) = 63

∴ z has minimum value 22.5, when x = 2 and y = `1/2`.

shaalaa.com
Linear Programming Problem (L.P.P.)
  Is there an error in this question or solution?
Chapter 7: Linear Programming - Exercise 7.4 [Page 241]

RELATED QUESTIONS

Find the feasible solution of the following inequation:

2x + 3y ≤ 6, x + y ≥ 2, x ≥ 0, y ≥ 0


A furniture dealer deals in tables and chairs. He has ₹ 1,50,000 to invest and a space to store at most 60 pieces. A table costs him ₹ 1500 and a chair ₹ 750. Construct the inequations and find the feasible solution.


The company makes concrete bricks made up of cement and sand. The weight of a concrete brick has to be at least 5 kg. Cement costs ₹ 20 per kg and sand costs of ₹ 6 per kg. Strength consideration dictates that a concrete brick should contain minimum 4 kg of cement and not more than 2 kg of sand. Form the L.P.P. for the cost to be minimum.


Select the appropriate alternatives for each of the following question:

The value of objective function is maximum under linear constraints


The point of which the maximum value of x + y subject to the constraints x + 2y ≤  70, 2x + y ≤ 95, x, ≥ 0, y ≥ 0 is is obtained at ______.


Solution of LPP to minimize z = 2x + 3y, such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is ______.


The half-plane represented by 3x + 2y < 8 contains the point ______.


The half-plane represented by 4x + 3y >14 contains the point ______.


Solve the following LPP:

Maximize z = 6x + 10y subject to 3x + 5y ≤ 10, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.


Solve each of the following inequations graphically using XY-plane:

4x - 18 ≥ 0


Solve each of the following inequations graphically using XY-plane:

5y - 12 ≥ 0


Find graphical solution for the following system of linear in equation:

3x + 4y ≤ 12, x - 2y ≥ 2, y ≥ - 1


A company produces mixers and food processors. Profit on selling one mixer and one food processor is Rs 2,000 and Rs 3,000 respectively. Both the products are processed through three machines A, B, C. The time required in hours for each product and total time available in hours per week on each machine arc as follows:

Machine  Mixer Food Processor Available time
A 3 3 36
B 5 2 50
C 2 6 60

How many mixers and food processors should be produced in order to maximize the profit?


In a cattle breeding firm, it is prescribed that the food ration for one animal must contain 14, 22, and 1 unit of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit weight of these two contains the following amounts of these three nutrients:

Nutrient\Fodder Fodder 1 Fodder2
Nutrient A 2 1
Nutrient B 2 3
Nutrient C 1 1

The cost of fodder 1 is ₹ 3 per unit and that of fodder ₹ 2 per unit. Formulate the L.P.P. to minimize the cost.


Solve the following L.P.P. by graphical method:

Maximize: Z = 4x + 6y

Subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Choose the correct alternative :

Which of the following is correct?


Objective function of LPP is ______.


A train carries at least twice as many first class passengers (y) as second class passengers (x) The constraint is given by_______


State whether the following is True or False :

Saina wants to invest at most ₹ 24000 in bonds and fixed deposits. Mathematically this constraints is written as x + y ≤ 24000 where x is investment in bond and y is in fixed deposits.


State whether the following is True or False :

The feasible solution of LPP belongs to only quadrant I.


Choose the correct alternative:

The feasible region is


The variables involved in LPP are called ______


A company produces two types of products say type A and B. Profits on the two types of product are ₹ 30/- and ₹ 40/- per kg respectively. The data on resources required and availability of resources are given below.

  Requirements Capacity available per month
Product A Product B
Raw material (kgs) 60 120 12000
Machining hours/piece 8 5 600
Assembling (man hours) 3 4 500

Formulate this problem as a linear programming problem to maximize the profit.


Solve the following linear programming problems by graphical method.

Minimize Z = 3x1 + 2x2 subject to the constraints 5x1 + x2 ≥ 10; x1 + x2 ≥ 6; x1 + 4x2 ≥ 12 and x1, x2 ≥ 0.


Solve the following linear programming problems by graphical method.

Maximize Z = 40x1 + 50x2 subject to constraints 3x1 + x2 ≤ 9; x1 + 2x2 ≤ 8 and x1, x2 ≥ 0.


Solve the following linear programming problems by graphical method.

Minimize Z = 20x1 + 40x2 subject to the constraints 36x1 + 6x2 ≥ 108; 3x1 + 12x2 ≥ 36; 20x1 + 10x2 ≥ 100 and x1, x2 ≥ 0.


Maximize: z = 3x1 + 4x2 subject to 2x1 + x2 ≤ 40, 2x1 + 5x2 ≤ 180, x1, x2 ≥ 0. In the LPP, which one of the following is feasible comer point?


A solution which maximizes or minimizes the given LPP is called


A firm manufactures pills in two sizes A and B. Size A contains 2 mgs of aspirin, 5 mgs of bicarbonate and 1 mg of codeine. Size B contains 1 mg. of aspirin, 8 mgs. of bicarbonate and 6 mgs. of codeine. It is found by users that it requires at least 12 mgs. of aspirin, 74 mgs. of bicarbonate and 24 mgs. of codeine for providing immediate relief. It is required to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a standard LLP.


Solve the following linear programming problem graphically.

Maximise Z = 4x1 + x2 subject to the constraints x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1 ≥ 0, x2 ≥ 0.


Solve the following linear programming problem graphically.

Minimize Z = 200x1 + 500x2 subject to the constraints: x1 + 2x2 ≥ 10; 3x1 + 4x2 ≤ 24 and x1 ≥ 0, x2 ≥ 0.


The maximum value of Z = 3x + 5y, subject to 3x + 2y ≤ 18, x ≤ a, y ≤ 6, x, y ≥ 0 is ______.


Solve the following LP.P.

Maximize z = 13x + 9y,

Subject to 3x + 2y ≤ 12,

x + y ≥ 4,

x ≥ 0,

y ≥ 0.


Two kinds of foods A and B are being considered to form a weekly diet. The minimum weekly requirements of fats, Carbohydrates and proteins are 12, 16 and 15 units respectively. One kg of food A has 2, 8 and 5 units respectively of these ingredients and one kg of food B has 6, 2 and 3 units respectively. The price of food A is Rs. 4 per kg and that of food B is Rs. 3 per kg. Formulate the L.P.P. and find the minimum cost.


Sketch the graph of the following inequation in XOY co-ordinate system.

x + y ≤ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×