English

State whether the following is True or False : Saina wants to invest at most ₹ 24000 in bonds and fixed deposits. Mathematically this constraints is written as x + y ≤ 24000 where x is investment in - Mathematics and Statistics

Advertisements
Advertisements

Question

State whether the following is True or False :

Saina wants to invest at most ₹ 24000 in bonds and fixed deposits. Mathematically this constraints is written as x + y ≤ 24000 where x is investment in bond and y is in fixed deposits.

Options

  • True

  • False

MCQ
True or False

Solution

Saina wants to invest at most ₹ 24000 in bonds and fixed deposits. Mathematically this constraints is written as x + y ≤ 24000 where x is investment in bond and y is in fixed deposits True.

shaalaa.com
Linear Programming Problem (L.P.P.)
  Is there an error in this question or solution?
Chapter 6: Linear Programming - Miscellaneous Exercise 6 [Page 104]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Linear Programming
Miscellaneous Exercise 6 | Q 3.5 | Page 104

RELATED QUESTIONS

A manufacturer produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs requires 1 hour of work on Machine M1 and 3 hours of work on Machine M2. A package of tubes requires 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. Formulate the LPP to maximize the profit, if he operates the machine M1, for almost 10 hours a day and machine M2 for almost 12 hours a day.


Which of the following is correct?


Objective function of LPP is ______.


The maximum value of z = 5x + 3y subject to the constraints 3x + 5y ≤ 15, 5x + 2y ≤ 10, x, y ≥ 0 is ______.


If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0), then the point of minimum z = 3x + 2y is ______.


Solve each of the following inequations graphically using XY-plane:

y ≤ - 3.5


A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:

Product → Chair (x) Table (y) Available time (hours)
Machine ↓
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate the above problem as LPP. Solve it graphically


A company manufactures two types of chemicals A and B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B.

Raw Material \Chemical A B Availability
p 3 2 120
Q 2 5 160

The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. Formulate the problem as L.P.P. to maximize the profit.


A manufacturer produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs requires 1 hour of work on Machine M1 and 3 hours of work on M2. A package of tubes requires 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. If maximum availability of Machine M1 is 10 hours and that of Machine M2 is 12 hours, then formulate the L.P.P. to maximize the profit.


Choose the correct alternative :

Which of the following is correct?


Choose the correct alternative :

The half plane represented by 4x + 3y ≥ 14 contains the point


Which value of x is in the solution set of inequality − 2X + Y ≥ 17


Maximize z = −x + 2y subjected to constraints x + y ≥ 5, x ≥ 3, x + 2y ≥ 6, y ≥ 0 is this LPP solvable? Justify your answer.


Solve the following linear programming problems by graphical method.

Maximize Z = 20x1 + 30x2 subject to constraints 3x1 + 3x2 ≤ 36; 5x1 + 2x2 ≤ 50; 2x1 + 6x2 ≤ 60 and x1, x2 ≥ 0.


The minimum value of the objective function Z = x + 3y subject to the constraints 2x + y ≤ 20, x + 2y ≤ 20, x > 0 and y > 0 is


Solve the following linear programming problem graphically.

Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0.


Solve the following LP.P.

Maximize z = 13x + 9y,

Subject to 3x + 2y ≤ 12,

x + y ≥ 4,

x ≥ 0,

y ≥ 0.


The set of feasible solutions of LPP is a ______.


Solve the following LPP by graphical method:

Maximize: z = 3x + 5y Subject to:  x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×