English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

Solve the following linear programming problem graphically. Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0. - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following linear programming problem graphically.

Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0.

Graph

Solution

Since the decision variables, x1 and x2 are non-negative, the solution lies in the I quadrant of the plane.

Consider the equations

x1 + x2 = 50

x1 0 50
x2 50 0

3x1 + x2 = 90

x1 0 30
x2 90 0

The feasible region is OABC and its co-ordinates are O(0, 0) A(30, 0) C(0, 50) and B is the point of intersection of the lines

x1 + x2 = 50 ..........(1)

3x1 + x2 = 90 .........(2)

Verification of B:

x1 + x2 = 50 ..........(1)
3x1 + x2 = 90 .........(2)
−     −       −       
− 2x1 = − 40

x1 = 20

From (1), 20 + x2 = 50

x2 = 30

∴ B is (20, 30)

Corner points Z = 60x1 + 15x2
O(0, 0) 0
A(30, 0) 1800
B(20, 30) 1650
C(0, 50) 7500

Maximum value occurs at C(0, 50)

∴ The solution is x1 = 0, x2 = 50 and Zmax = 7500.

shaalaa.com
Linear Programming Problem (L.P.P.)
  Is there an error in this question or solution?
Chapter 10: Operations Research - Miscellaneous Problems [Page 252]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 10 Operations Research
Miscellaneous Problems | Q 6 | Page 252

RELATED QUESTIONS

Find the feasible solution of the following inequation:

2x + 3y ≤ 6, x + y ≥ 2, x ≥ 0, y ≥ 0


Solve the following LPP:

Maximize z = 4x + 2y subject to 3x + y ≤ 27, x + y ≤ 21, x ≥ 0, y ≥ 0.


Solve each of the following inequations graphically using XY-plane:

5y - 12 ≥ 0


A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20 per unit of A and ₹ 30 per unit of B. Both A and B make use of two essential components a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each units of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should be manufactured per month to maximize profit? How much is the maximum profit?


Choose the correct alternative :

The half plane represented by 3x + 2y ≤ 0 constraints the point.


Solve the Linear Programming problem graphically:

Maximize z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find the maximum value of z.


Minimize z = 7x + y subjected to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0


Solve the following linear programming problems by graphical method.

Maximize Z = 22x1 + 18x2 subject to constraints 960x1 + 640x2 ≤ 15360; x1 + x2 ≤ 20 and x1, x2 ≥ 0.


The maximum value of Z = 3x + 5y, subject to 3x + 2y ≤ 18, x ≤ a, y ≤ 6, x, y ≥ 0 is ______.


The optimal value of the objective function is attained at the ______ of feasible region.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×